
Hasselt University
Master of Computer Science

Improving DASH Streaming with Server
and Network Assistance (SAND)

Author
Joris Herbots

Promotor
Prof. dr. Peter Quax

Co-promotor
Prof. dr. Wim Lamotte

Mentor
dr. Maarten Wijnants

2018-2019

Acknowledgements

I would like to start by thanking all the people who stood by my side while realizing this thesis, this work
would not have been possible without them.

Firstly, I would to thank my mentor Dr. Maarten Wijnants for his continuous guidance, motivation
and support of my master thesis. His insightful feedback and knowledge have been of great value to me
and have helped me a lot during the writing and development of this thesis. I could not have imagined
having a better mentor for my master thesis.

I would also like to express my gratitude to my promotors professor Peter Quax and professor Wim
Lamotte for providing this unique opportunity. Without their support, it would not have been possible
to research this thesis subject.

Last, but definitely not least, I would like to thank my girlfriend, my family and my friends for their
unconditional support and patience.

i

List of Abbreviations

Abbreviation Meaning

ABNF Augmented Backus–Naur Form

ABR Adaptive Bitrate

BOLA Buffer Occupancy based Lyapunov Algorithm

CDN Content Delivery Networks

CE Core Experiment

CORS Cross-Origin Resource Sharing

DANE DASH aware network element

DASH-IF DASH Industry Forum

DNS Domain Name System

EWMA exponentially weighted moving average

FQDN Fully Qualified Domain Name

HAS HTTP Adaptive Streaming

HDS HTTP Dynamic Streaming

HEVC High Efficiency Video Coding

HLS HTTP Live Streaming

HTTP Hypertext Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

ID Unique Identifier

IP Internet Protocol

ISP Internet Service Provider

JSON JavaScript Object Notation

MITM man-in-the-middle

MPD Media Presentation Description

MPEG Moving Picture Expert Group

MPEG-DASH Dynamic Adaptive Streaming over HTTP

MSS Microsoft Smooth Streaming

Mbit Megabit

NAT Network Address Translation

OF OpenFlow

PED Parameters Enhancing Delivery

PER Parameters Enhancing Reception

POC Proof of Concept

PQDN Partially Qualified Domain Name

QoE Quality of Experience

REST Representational State Transfer

RNE Regular network element

ii

ACKNOWLEDGEMENTS iii

RTMP Real-Time Messaging Protocol

RTMPT Real-Time Messaging Protocol Tunneled

RTP Realtime Transport Protocol

RTSP Realtime Streaming Protocol

SAND Server and Network Assisted DASH

SDN Software-defined networking

SIP Session Initiation Protocol

TBF Token Bucket Filter

TC Traffic Control

TCP Transmission Control Protocol

UDP User Datagram Protcol

UUID Universally unique identifier

VO Variable Oject

XML Extensible Markup Language

XSD XML Schema Definition

Contents

Acknowledgements i

Abstract vi

1 Introduction 1
1.1 Research Questions . 2
1.2 Thesis Overview . 2

2 Streaming 3
2.1 Media Composition . 3
2.2 Early Streaming Protocols . 4
2.3 Modern Streaming Protocols . 5
2.4 Adaptive Streaming . 5

2.4.1 Adaptive Streaming Content Preparation . 6
2.4.2 MPEG-DASH . 6

3 Server and Network Assisted DASH 8
3.1 Architecture . 8

3.1.1 Dash clients . 9
3.1.2 Regular Network Elements . 9
3.1.3 DASH Aware Network Elements . 10
3.1.4 Metric servers . 11

3.2 Messages . 11
3.2.1 Message Format . 12
3.2.2 Metric Messages . 13
3.2.3 Status Messages . 14
3.2.4 Parameters Enhancing Reception (PER) Messages 16
3.2.5 Parameters Enhancing Delivery (PED) Messages 18

3.3 Message Exchange . 18
3.3.1 SAND Communication Channels . 18
3.3.2 Channel Signaling . 19

3.4 Discussion . 19
3.4.1 Security Considerations . 19
3.4.2 Discrepancies . 20

4 POC Out of band smart resource allocation entity 22
4.1 Implementation Considerations . 23

4.1.1 DASH Client . 23
4.1.2 DANE . 25

4.2 Communication Workflow . 25
4.2.1 Polling-based Client Identification . 25
4.2.2 Handshake . 26
4.2.3 Bandwidth consumption guidance . 28
4.2.4 Smart Caching . 29

4.3 Dash.js SAND Implementation . 32
4.3.1 Architecture . 32
4.3.2 Execution flow . 34

iv

CONTENTS v

4.3.3 SAND Architecture and Hooks . 35
4.4 Python DANE implementation . 40

4.4.1 Architecture . 40
4.4.2 Resource allocation entity . 43
4.4.3 Smart caching entity . 43

5 POC Evaluation 45
5.1 Testbed . 45
5.2 Experiments . 46
5.3 Results . 47

5.3.1 No DANE Involvement . 48
5.3.2 Fair Bandwidth Guidance . 50
5.3.3 Smart Caching . 52

6 Related Works 59
6.1 Software-Defined Networking for Improving DASH Streams 59
6.2 MPEG-DASH SAND Interoperability Guidelines . 61
6.3 MPEG-DASH SAND for Improving DASH Streams . 62

7 Conclusion and Future Work 63

Appendices 65

A MPEG-DASH Manifest 66

B SAND Default Message Data Formats 68
B.1 SAND Message XSD Schema . 68
B.2 SAND Message header extensions ABNF . 75

Abstract

Video streaming over the Internet has increasingly become more popular in the last decade due to ad-
vancements in technology and hardware. We have seen a shift towards the adaptive streaming paradigm,
with implementations such as Dynamic Adaptive Streaming over HTTP (MPEG-DASH) becoming the
defacto standard. DASH introduces an effective and scalable way for major content providers to de-
liver media streaming services over the Internet. Media origin servers host media segments which are
compatible with CDNs and firewalls, clients proceed by streaming each segment individually and in an
adaptive way based on, for example, network conditions. MPEG-DASH’s adaptation behaviour, nev-
ertheless, suffers from performance problems when a large number of clients are deployed on a shared
network connection. This shared network connection, known as the last mile, typically forms a bot-
tleneck when a large number of clients compete for bandwidth, in turn leading to many video quality
changes and stalling behaviour both of which are detrimental to the Quality of Experience (QoE) of a user.

In 2017, the Moving Picture Expert Group (MPEG) released its Server and Network Assisted DASH
(SAND) specification, which defines a protocol for exchanging realtime operational characteristics in the
form of messages between entities involved in the DASH streaming process. This enables servers and
middleboxes who understand DASH content passing through them, to provide more accurate information
such that clients can make better informed choices concerning their adaptation logic. In this thesis, the
SAND specification in a shared network connection use case is explored. More specifically, we will create
a bandwidth guidance entity as well as a smart web cache entity which will provide an overall better QoE
towards users on the shared network condition, as well as reducing the combined bandwidth consumption
by all these clients. As an example, our evaluation shows that deploying a bandwidth guidance entity
within a shared network setting, MPEG-DASH clients end up using a fair bandwidth share, in turn
leading to a better QoE for each individual user.

vi

Chapter 1

Introduction

Multimedia delivery forms the main bulk of Internet traffic anno 2019 of which video streaming is the
biggest. The sharing of media, in particular video and audio, is rapidly rising in popularity. Social media
platforms such as Facebook1 and Instagram2 allow users to share and express their experiences through
the use of (live) video streaming. Amateur content creators get to express their creativity through plat-
forms such as Youtube3 or Vimeo4. Even professional companies like Netflix5 and HBO6 or local ISPs
such as Telenet7 offer movies and series on a paid streaming platform. All these services provide an easy
to use platform through which users can watch content on demand. This can be noticed in the footprint
IP video traffic has on a global scale. Projections by Cisco indicate that video traffic will rise up to 82%
of all IP traffic by 2022 coming from 75% in 2017 [1].

As of lately a new paradigm has been adopted for streaming media over the Internet. Traditionally,
streaming was done by connecting to a media streaming service (e.g., with the Realtime Streaming
Protocol (RTSP) over the Realtime Transport Protocol (RTP)) in which a server-driven approach
has control over the streaming logic and clients issue commands to control the media streaming (e.g., play,
pause, stop). This however does not scale well and requires complex setups, which is why nowadays the
majority of Internet streaming sessions happens through adaptive streaming protocols such as MPEG-
DASH. These protocols shift the responsibility of the streaming logic to a client-driven approach; instead
of the server deciding which quality to provide to a client based on network characteristics (e.g., through-
put), the client now performs this logic.

These adaptive streaming protocols typically utilize HTTP as their transport protocol, hence they are
also called HTTP Adaptive Streaming (HAS) protocols. HAS-based clients yield many advantages
over traditional RTP-based clients; all devices capable of video playback that include access to the Inter-
net (e.g., a smart TV) inherently have access to adaptive streaming. HAS also scales very well and works
transparently with current web infrastructures such as web caches and CDNs. Despite these advantages,
HAS-based clients suffer from several drawbacks. For example: if a web cache is available on the media
delivery path between the client and server, cache misses cause extra delay in the media content being
transferred, which might be misinterpreted by clients as a drop in throughput, causing it to change its
streaming quality which in turn directly influences the Quality of Experience for a user [2, 3]. Another
problem which is becoming more prevalent, is concurrent HAS clients in shared networks competing for
bandwidth. Clients competing with each other for bandwidth will experience throughput fluctuations
which in turn leads to bitrate switching and stalling which has a negative impact on QoE [4].

Previous examples show how a lack of network information can have detrimental effects to the streaming
experience of a user. This is one of the reasons why the industry and standardization bodies recently
have started looking into server and network assisted streaming. The MPEG-DASH protocol received
an extra part in 2017 called Server and Network Assisted DASH (SAND). The goal of SAND is to

1https://www.facebook.com/
2https://www.instagram.com/
3https://www.youtube.com/
4https://vimeo.com/
5https://www.netflix.com/
6https://www.hbo.com/series
7https://www.yeloplay.be/

1

CHAPTER 1. INTRODUCTION 2

enhance delivery of DASH content by sharing real-time operational characteristics (e.g., cache availabil-
ity, throughput, QoS information, . . .) with DASH clients in order to achieve a more efficient streaming
process.

1.1 Research Questions

The purpose of this thesis is to focus on the advantages that server and network assistance offer in adap-
tive streaming. For this we will look at the standardized MPEG-DASH protocol and its new SAND
specification. We will look at use cases that involve clients consuming DASH streams whilst compet-
ing for bandwidth on a shared network connection. Examples of such environments include households,
apartment complexes, airports, university buildings, etc. . . The limited throughput of the shared last mile
in these networks is the bottleneck which makes it hard to support multiple concurrent users streaming
(high quality) content.

This master thesis falls under the category of a case study, we will focus on previously mentioned
problems with the following research questions:

1. What aspects are required to transition from the SAND specification to a deployable SAND imple-
mentation?

2. Is it possible to guide multiple users on a shared network connection into a fair bandwidth usage
using only SAND such that they do not experience the detrimental effects caused by bandwidth
competition?

3. Can we support multiple clients consuming the same DASH stream within the same network in
such a way that:

(a) Clients enjoy the same or a better overall Quality of Experience compared to a non-SAND
scenario

(b) The overall bandwidth consumption is lower than when the clients would individually compete
for the same content at the quality provided by SAND

1.2 Thesis Overview

To answer previous research questions, we will analyze the SAND specification and come up with a proof
of concept. This thesis is divided into seven chapters:

• Chapter 2: A brief introduction into streaming describing the older streaming protocols and the
new HTTP adaptive streaming paradigm.

• Chapter 3: A walk-through of the SAND specification.

• Chapter 4: In this chapter we explain our proof of concept that will tackle our research questions.

• Chapter 5: An experimental evaluation of our proof of concept together with its findings.

• Chapter 6: This chapter will review related works on the topic of server and network assistance in
adaptive streaming, more specifically with a focus on MPEG-DASH and SAND.

• Chapter 7: The conclusion of this thesis together with future work in the domain of network and
server assistance for HTTP adaptive streaming which we identified while realizing this thesis.

Chapter 2

Streaming

In order to better understand the details and context of this thesis, this chapter will serve as a short
introduction into the world of streaming over the Internet. Multimedia - such as video and audio - being
streamed, also known as streaming media, is a process in which a server (the origin or provider) trans-
mits multimedia content to a client (the receiver) which consumes it immediately, contrary to download-
ing where the client saves the multimedia content on a local device to be consumed after the download
process has finished. Streaming enables users to enjoy multimedia content as if they had saved it locally
without the actual space requirement and without having to wait until the full download if complete. In
a typical setup over the Internet, the server presents its contents via a public address which the clients
access using software, e.g. an HTTP web server with video files accessed through a web browser, or an
RTSP (Realtime Streaming Protocol) live security camera feed consumed by a mediaplayer such as VLC1.

In order to enable streaming of media and depending on the sort of content and quality, a minimal
amount of bandwidth is required. During the early 2000s the growth in network capabilities and band-
width in the last mile (i.e. the Internet connection between a household and its Internet Service Provider
(ISP)) facilitated the growth of Internet media streaming. Suddenly it became feasible to stream and
consume SD quality video in real time. At the time of writing, the global average Internet connection
speed is 59.45 Mbit per second with most first world countries reaching speeds far above that average [5].
The required bandwidth for media typically scales up in bitrate as its quality rises. Netflix for example
recommends the following bitrate capabilities: 3 Mbit per second for SD quality (i.e. 360p), 5 Mbit per
second for HD quality (i.e. 720p) and 25 Mbit per second for Ultra HD quality (i.e. 4K) [6]. As such,
media content providers typically provide their media in different quality levels to reach as many clients
as possible.

2.1 Media Composition

All digital media - either saved locally or being streamed - is represented and stored in so called con-
tainer formats, sometimes also called wrappers. A container format defines the overall structure of
a file, including how its video, audio and metadata information are multiplexed together [7]. A con-
tainer format however does not define how the video and/or audio is encoded (i.e. binary represented).
Container formats are usually indicated by giving a media file a certain extension. For example, video
can be identified by one of the following (but not limited to): AVI, MP4, WEBM, FLV or MOV. Every
container format has its own traits and supported codecs which are all specified in its metadata structure
such that a playback device can properly decode (i.e. interpret) the content. Simpler container formats
are exclusive to one audio or video stream (e.g. WAV is a popular Windows audio only container format).
More advanced container formats allow multiple video and audio streams to be contained in a single file
(e.g. MKV is an open standard container format intended to serve as a universal format for storing
multimedia [8]). Figure 2.1 shows the hierarchy of a container format and an example of the Matroska
container format. The choice of a container and codec(s) depends, for example, on the needs of the media
creator or on the hardware support of the target audience machines.

Decoding of video and audio is usually done by the CPU which is a taxing process; most modern devices
however come equipped with hardware acceleration support (e.g. Intel Quic Sync [9]) for specific codecs

1https://www.videolan.org/

3

CHAPTER 2. STREAMING 4

to unburden the CPU from the decoding task. Hardware acceleration plays a big role on mobile devices
(e.g. smartphones or laptops) which are designed to be power efficient thus making them inherently not
fast for media decoding when considering the CPU alone, they typically can decode video streams but
this drains the battery fast and generates heat which will cause these passive cooled devices to throttle
the CPU down. This heterogeneous ecosystem of devices with different capabilities is what Adaptive
Streaming (also known as HTTP Adaptive Streaming (HAS)) tries to tackle (see Section 2.4).

Figure 2.1: On the left a container format hierarchy; on the right an example of a Matroska container
format containing three streams of which one video stream encoded with the H.264 codec, one audio
stream encoded with the AAC codec and finally a subtitle stream in the WebVTT format. The streamx#y
naming comes from how the Ffprobe3 tool outputs metadata information about media files.

2.2 Early Streaming Protocols

Early streaming protocols had to invent the wheel when it comes to streaming media over IP networks,
Realtime Streaming Protocol (RTSP) and H.323 are examples of such endeavours. H.323 was de-
signed as a real time media protocol for use cases such as video conferencing or livestreams [10]. RTSP
on the other hand was designed to have Videocassette Recorder (VCR) like capabilities, e.g. play, pause
and seek. Both protocols use the Realtime Transport Protocol (RTP) underneath for its end-to-end
data transmissions. The end-to-end principle implies that only server and client require intelligence about
the streaming process and that the systems that make up the network path only need to forward the
data. The underlying architecture of RTP uses the User Datagram Protocol (UDP) as its transport
protocol to avoid the overhead that the Transmission Control Protocol (TCP) introduces. The ul-
timate goal of RTP, contrary to the reliability goal of TCP, is to pursue timeliness [12, 11]. Peers that
wish to instantiate an RTP connection usually need some knowledge about each other and each other’s
capabilities (e.g. in terms of codec support), i.e. the RTP session parameters which are exchanged via
the Session Initiation Protocol (SIP) [13].

The actual content itself being transmitted, e.g. audo and video, are not defined by the protocol. In
order to stay up to date, RTP enables future updates through its profile and payload format system.
Each type of content being streamed is defined in a so called profile, popular profiles are the video and
audio profile. Every profile is associated with multiple payload formats which define the supported codec.

CHAPTER 2. STREAMING 5

Because of this system, the RTP protocol had the ability to evolve and adapt to the newest inventions
in media codecs and network protocols. At the time of writing, RTP supports most latest generation
codecs such as High Efficiency Video Coding (HEVC) and even modern network requirements such as
encrypted traffic all through the addition and expansion of profiles [14, 15].

RTP is still deployed as the go-to protocol for real time data transport, e.g. Voice over IP or gam-
ing [16], but has largely been superseded in the media streaming use case by more modern streaming
protocols that make use of existing web infrastructures.

2.3 Modern Streaming Protocols

One of the biggest drawbacks of streaming protocols such as RTP is that all logic resides at the server-
side; streaming heavily relies on server CPUs to process and distribute media to all clients, a resource
which nowadays is rather not spent on such trivial tasks. RTP also inherits the unreliable transport layer
properties tied to carrying its traffic over UDP, making it a stateless design which requires some kind of
session bookkeeping. RTP is considered to be a transport protocol but in reality runs on the application
layer of the OSI model [17]; RTP in other words runs in user space which is inherently slower than
kernel space (also known as ring 0). Because of how modern networks are structured, many clients reside
behind a Network Address Translation (NAT) device and/or a firewall which hinders incoming UDP
connections; complex workarounds are usually required combined with a UDP hole punching technique
in order for streaming sessions to work correctly [18].

It is because of the requirement for workarounds and/or complex server-side protocols that most stream-
ing solution nowadays look at TCP [19]. TCP inherently consumes extra bandwidth compared to UDP
due to its stateful design but is preferred because of its ease to use and widespread support across servers,
clients and network devices. Another modern approach is to use the Hypertext Transfer Protocol
(HTTP) [20]; this web based protocol nowadays comes with support for encrypted traffic, performs net-
work address translations of domains through the use of the Domain Name System (DNS) and is built
around a system to identify resources (i.e. media content) based on Uniform Resource Identifiers
(URI) [21]. By design, the HTTP specification allows network elements to improve connections between
servers and clients, e.g. HTTP web caches that improve network latency and reduce network traffic.

Real-Time Messaging Protocol (RTMP) was one of the first streaming protocols to utilize TCP
connections and was sometimes encapsulated by HTTP (called Real-Time Messaging Protocol Tun-
neled (RTMPT)) to traverse firewalls; the benefit of traversing corporate firewalls outweighed the added
penalty of HTTP headers. The proprietary protocol was originally developed by Macromedia and later
made public after the company was acquired by Adobe. Its original use was to be the streaming protocol
used between a Flash player and server [22]. RTMP enjoyed a long time user base because of the popu-
larity Flash based application had on the web until 2017 Adobe decided to call Flash end of life [23].

The original4 web envisioned clients downloading content from servers and then process these contents
on the clients’ machines, thus not straining servers in terms of processing power for rendering web pages.
Instead all web clients (i.e. browsers) interpret web based content (e.g. HTML) and build up a visual
representation tailored to the device on which the browser runs. By deploying media streaming over
HTTP, the same paradigm for content processing was applied, shifting the responsibility of processing
streams to the client side. The problem with this setup is that servers have no idea what media content
a client can or wishes to handle; adaptive streaming was invented for this reason.

2.4 Adaptive Streaming

As mentioned in Section 2.3, (HTTP) adaptive streaming - as its name suggests - is a method to let a client
dynamically adapt to changing conditions during a streaming process. The streaming logic contained at
the client side decides during media playback what quality or version of the content suits the client best

4We nowadays notice a shift in this paradigm where origin servers and/or edgeworkers pre-generate web pages (e.g. React
framework [https://reactjs.org/]) thus reducing the actual processing requirements for clients. This is especially helpful in
cases where clients are not equipped with the right amount of processing power or when latency plays an important role
(e.g. e-commerce websites).

CHAPTER 2. STREAMING 6

based on its characteristics (e.g. video element size), device capabilities (e.g. support for H.264 hardware
accelerated decoding) and the available network bandwidth which can fluctuate due to many reasons such
as (but not limited to): mobile connection instability, oversaturated last mile, congested origin server or
network path, . . .

2.4.1 Adaptive Streaming Content Preparation

The way origin servers provide media content also changes because of this adaptive approach. Instead
of only providing media in one type of quality, the origin now has to provide a wide range of qualities
in order to satisfy a heterogeneous target audience. In practise, this is done through an adaptive
streaming preparation step in which an input media is transcoded5 into multiple representations,
each with differing settings [24]. Typically, input media is transcoded into multiple videos each with
a different resolution (240p, 360p, 720p, 1080p, 1440p and 4K are commonly used) and corresponding
bandwidth budget6 and audio qualities (all in seperate files); lower resolution videos and audio take up less
bandwidth than their high resolution counterparts. All these transcoded video and audio files, also called
the intermediate formats, are then sliced into small segments of specific short duration (typically
around two to ten seconds long). In order to keep track and inform clients of all these different qualities
and how they are segmented, the preparation step finally bundles all information into what is called
a manifest file [24, 25]. Figure 2.2 gives a visual representation of the previously explained pipeline.
Clients begin their streaming process by fetching the manifest file and deciding what representation to
stream based on the manifest’s contents.

Figure 2.2: Adaptive streaming content preparation pipeline: Input fed to the media transcoder produces
multiple qualities that get sliced into short temporal segments which are stored away and referenced by
the manifest file. The different colors indicate the different media qualities. The temporal segments
indicated by small rectangles differ in storage size depending on the media quality they belong to.

2.4.2 MPEG-DASH

During the early years of adaptive streaming, multiple protocols were developed, each similar to the
above explained behaviour, but with its own twist of what exactly is supported. These protocols in-
cluded HTTP Live Streaming (HLS) by Apple [26], Microsoft Smooth Streaming (MSS) [27]
and HTTP Dynamic Streaming (HDS) by Adobe [28]. These adaptive streaming protocols were all
non-standardized, proprietary in nature and (mostly) driven by individual companies all with their own
idea about how the future of adaptive streaming should look like. Hence in 2010 development for a

5A process that takes an already encoded media input, typically decodes it into a raw representation and re-encodes it
to a new format. During this process characteristics such as the bitrate budget, actual video resolution and/or used codecs
can change. The net result is the same media but represented differently under the hood.

6It is not unusual to have videos with the same spatial and temporal resolutions but encoded at different bitrates. Codecs
such as H.264 and H.265 allow for more advanced compression algorithms which require more processing power to decode
but result in less bandwidth used.

CHAPTER 2. STREAMING 7

general use specification design by the Moving Picture Expert Group (MPEG) was started called
Dynamic Adaptive Streaming over HTTP (MPEG-DASH) which was internationally standardized
in 2012. At the time of writing many big companies - among which Netflix and Youtube - have adopted
the MPEG-DASH specification as their default for adaptive streaming.

An MPEG-DASH stream starts like any regular adaptive streaming protocol by fetching the manifest file,
the manifest is referred to as the Media Presentation Description (MPD) and utilizes Extensible
Markup Language (XML) as its data format. The MPD contains at least one period element which
describes the actual content being played by its start time and duration; typically a manifest contains
one period for the full media it represents. The period itself contains at least one adaptation set that
represents a media stream (see Section 2.1), for example, a manifest representing media with video, audio
and subtitles will have one period with three adaptation sets for video, audio and subtitles respectively.
Each adaptation set typically contains multiple representation elements that represent the different
qualities as explained in Section 2.4.1. A representation element offers three ways of referring to the
segmented media files:

1. Individual segment URLs through the SegmentList and SegmentURL elements

2. Template-based system through the SegmentTemplate element

3. Range-based system; either on byte ranges or time ranges through the SegmentTimeline element

Of these three ways, the first two are the most simple and popular. Listing A.2 shows the difference
a template makes in terms of required XML lines compared to specifying each segment individually.
For examples of how a manifest file is represented, see Appendix A; for a high level overview of the
MPEG-DASH streaming process see Figure 2.3.

Figure 2.3: MPEG-DASH inner workings: A client capable of MPEG-DASH fetches a manifest, which
gets parsed; based on its contents, the quality adaptation logic decides what quality segments to fetch
from the origin server and to finally display to the user in the media player.

Chapter 3

Server and Network Assisted DASH

As explained in Chapter 2, HTTP-based adaptive streaming has risen to be the primary choice when it
comes to media streaming over the Internet. The most popular protocol for streaming is the standardized
MPEG-DASH, which enjoys the support of many large industry bodies including the DASH Industry Fo-
rum (DASH-IF). Because MPEG-DASH is designed to be a protocol which operates over HTTP in an
end-to-end fashion where the streaming logic resides at the client, it inherently enjoys the benefits HTTP
provides such as scalability through the use of web caches and Content Delivery Networks (CDNs).

These decentralized benefits and the one-sided client logic however also introduce some drawbacks for
both the origin server providing the media content and the client fetching the media. The origin server
has no control over client behaviour, which in certain scenarios is an unwanted side-effect. For example,
an origin server with QoS support might have trouble streaming at a fixed (i.e, promised) quality when
in-network elements - such as caches - interfere. On the other hand, the client can experience drawbacks
too, for example, a cache miss will be interpreted as a bandwidth reduction to the origin server, which
in turn will make the client drop the quality being streamed, or in a worst case scenario will cause the
media playback to stall.

Previous drawbacks can be defined as one-to-one drawbacks, however, when multiple DASH clients are
involved in the streaming process, they can indirectly influence each other by competing for the same
shared bandwidth from the origin server, thus introducing oscillations which are detrimental to the Qual-
ity of Experience (QoE) [3].

When examining some of the previously mentioned drawbacks, it all boils down to a lack of infor-
mation. When the origin server, network entities such as caches/CDNs and clients are able to exchange
network- and streaming-related information, better informed choices can be made to avoid or minimize
the aforementioned drawbacks (e.g. a cache entity detecting a cache miss could insert an extra piece
of information indicating what happened upon which the client does not decide to lower its choice of
streaming quality).

As such in 2013, the MPEG started a Core Experiment (CE) in which server and network assisted
DASH was explored. By collecting and exploring use cases, experts came up with the Server and Net-
work Assisted DASH (SAND) specification, officially referred to as ISO/IEC 23009-5 [29], officially
published in 2017. The SAND architecture defines a set of messages between DASH clients and network
entities for the purpose of sharing operational characteristics, for example server throughput metrics,
which in turn enable these entities to make better informed choices such that potentially negative im-
pacts on Quality of Experience can be mitigated.

This chapter will provide a better understanding of server and network assistance using SAND in DASH
streaming.

3.1 Architecture

A normal DASH stream consists of a media origin (i.e., a web server) and a DASH client which commu-
nicate in an end-to-end fashion. Entities that wish to improve their streaming experience can upgrade

8

CHAPTER 3. SERVER AND NETWORK ASSISTED DASH 9

their service with the SAND protocol to enable in-band entities and out-of-band (OOB) entities to share
operational characteristics (see Section 3.1.3 for more information). It is important to note that the (full)
implementation of SAND is neither mandatory nor necessary to set up a DASH stream; the objective
of SAND is to exchange streaming- and network-related information with SAND-capable entities to en-
hance the DASH streaming session. Depending on their function within the streaming process, the SAND
architecture divides these entities into four broad categories:

1. DASH clients

2. Regular network elements (RNEs)

3. DASH aware network elements (DANEs)

4. Metric servers

3.1.1 Dash clients

Dash clients capable of SAND have to augment their internal processing model. A regular DASH client
consists of a Media engine responsible for requesting and processing MPEG-DASH media segments, an
Application responsible for user interaction and the DASH access engine which communicates with
the network to coordinate the actual data communication in order to retrieve segments and manifests1

[30]. The SAND augmentation takes place at the DASH access engine component which now has to have
support for SAND delivery channels (see Section 3.3) and SAND messages (see Section 3.2). Figure 3.1
shows an abstract DASH client model augmented for SAND communication.

Figure 3.1: The ISO 23009-1 [30] DASH client model augmented with a SAND communication channel.

3.1.2 Regular Network Elements

RNEs are network entities on the end-to-end media delivery path between DASH clients and origin servers.
They are neither DASH- nor SAND-aware and treat all traffic passing through them in an agnostic fashion
(i.e., simple pass through). Examples of RNEs include, but are not limited to: routers, switches, gateway
servers, CDNs, web caches, . . . A web cache or CDN capable of caching/providing DASH streams is also
considered a RNE since they blindly operate on web resources and do not question whether the requested
content from a client is for a DASH streaming session. They can however be augmented to be DASH- and
SAND-aware which then makes them a DANE (see Section 3.1.3). It is important to note that SAND
messages exchanged over a non-encrypted HTTP connection between SAND-capable entities must be
flagged with a no-caching directive to prevent RNEs from caching the messages. Figure 3.2 depicts an
abstract network overview of a DASH stream with an in-band RNE that lies on the end-to-end delivery
path. It is important to note that when we address a DANE as in-band, we target a DANE that is on the
end-to-end delivery path; an out-of-band DANE targets a DANE which does not reside on the end-to-end
media delivery path.

1The DASH specification officially states that manifest fetching is out of scope, in other words, it is left over to the
actual implementation. However, typically DASH clients incorporate this behaviour in the DASH access engine (e.g.,
DASH.js[https://github.com/Dash-Industry-Forum/dash.js/] and Shakaplayer[https://github.com/google/shaka-player/].

CHAPTER 3. SERVER AND NETWORK ASSISTED DASH 10

Figure 3.2: An abstract network overview showing a regular network element fit transparently into the
SAND architecture. The top example depicts a RNE in a non-SAND DASH session whilst the bottom
example depicts a RNE in a SAND-enabled DASH session.

3.1.3 DASH Aware Network Elements

Contrary to RNEs, entities that have a minimal knowledge about DASH streams taking place are called
DANEs; such entities implement a subset or the full SAND specification. Their capabilities range from
providing feedback to SAND-capable clients and other DANEs, to the prioritization or even alteration
of DASH streaming behaviour depending on its goal (e.g., a resource allocation entity that coordinates
multiple clients into sharing network bandwidth in a fair manner). DANEs are not required to be in-band
entities and can be contacted by clients or other DANEs as an out-of-band entity. Even though an OOB
DANE does not perceive DASH traffic flowing through it, it can augment a DASH stream via SAND
messages sent from either other DANEs or the DASH client directly. Figure 3.3 depicts an abstract
network overview incorporating DANEs.

CHAPTER 3. SERVER AND NETWORK ASSISTED DASH 11

Figure 3.3: An abstract network overview depicting SAND communication between a media origin and
client. An in-band network element capable of SAND participates in this communication and also sees
media segments passing through itself. Another out-of-band DANE contacted by the client provides extra
guidance during the DASH streaming process.

3.1.4 Metric servers

Metric servers implement the capability for aggregating and storing DASH metrics from DASH clients.
Even though metric servers are defined as a separate category, in practise the SAND specification leaves
open what an entity implements. In other words, it is possible for a DANE to also be a metric server.
Figure 3.4 depicts a DASH session incorporating a metrics exchange with a metrics server.

Figure 3.4: An abstract network overview depicting DASH metrics being exchanged via a SAND com-
munication channel between a DASH client and an out-of-band metrics server. The media origin has no
knowledge of SAND and does not know that the DASH client exchanges these messages with an external
party.

3.2 Messages

Based on the architecture described in Section 3.1, the SAND specification came up with the following
four categories of SAND messages, each with a specific goal in mind (see Sections 3.2.2, 3.2.3, 3.2.4 and
3.2.5 for a more detailed description):

1. Status messages

2. Parameters Enhancing Reception (PER)

3. Parameters Enhancing Delivery (PED)

4. Metrics

CHAPTER 3. SERVER AND NETWORK ASSISTED DASH 12

Based on these message categories and the SAND architecture described in Section 3.1, the SAND
specification also considers the following interfaces for SAND message communication:

1. Client-to-Metrics-server interface: Carries metric messages

2. Client-to-DANE interface: Carries status messages

3. DANE-to-DANE interface: Carries PED messages

4. DANE-to-Client interface: Carries PER messages

Figure 3.5 depicts an abstract network overview including all types of SAND messages being exchanged.

Figure 3.5: An abstract network overview depicting a DASH stream between a media origin and a
client. The client communicates through status messages with the SAND capable media origin and an
out-of-band DANE; both communicate back to the client through PER messages. Both DANEs also
communicate with each other via PED messages. Finally, the client sends its metrics over to a metric
server through metric messages.

3.2.1 Message Format

SAND messages are expected to be at least represented by the Extensible Markup Language (XML)
data format [31] and HTTP header extension format. When exchanging SAND messages using XML,

entities can signal this format by utilizing the formally registered MIME type application/sand+xml .

SAND entities are however free to implement additional representation data formats (e.g., JavaScript
Object Notation (JSON)), but support for XML and HTTP header extensions are mandatory.

The SAND specification defines a set of 21 general messages belonging to the categories explained in
Sections 3.2.2, 3.2.3, 3.2.4 and 3.2.5 under the namespace urn:mpeg:dash:sand:messageset:all:2016

(from now on referenced to as the default SAND message set). Implementations are free to implement
the full default SAND message set or only a subset thereof; they are additionally not restricted to this
message set and are free to create a new set of messages for their purposes under its own namespace.
Each message is at the same time addressable by its message type (i.e. its identifier which is an integer in
the range [1,255]); the default SAND message set occupies the range [0,21], the range [22,127] is reserved
for future ISO additions and finally the range [128,255] is free for private use.

CHAPTER 3. SERVER AND NETWORK ASSISTED DASH 13

For efficiency reasons, the SAND specification opted for a common message envelope which allows
for SAND message aggregation. In other words, DANEs and DASH clients do not require to send each
SAND message individually, but can instead opt to aggregate them into one big message. In terms of
XML, this is represented as one root tag named SANDMessage which contains two common attributes

that apply to all SAND messages: senderId and generationTime , respectively the unique identifier

of the sender and the time at which the message was generated (both are optional parameters). The
SAND envelope contains at least one SAND message which in turn contains the data associated with
it. All SAND messages have two parameters in common: messageId and validityTime , respectively

a unique identifier that helps discriminate between multiple messages of the same type from the same
sender and a time indicating at which point the validity of the message may not be guaranteed anymore
by the sender (both are optional).

It is important to note that all SAND messages from the default SAND message set were designed
to be transferred over an HTTP/1.1 connection either formatted in XML or as header extensions. Al-
though the specification mentions that all SAND messages can be XML formatted, there exist exceptions
on this rule, these are further explained in Section 3.3. Appendix B.1 shows the XML formatting in
XSD form which the SAND messages utilize; the XSD can be used by implementations to validate SAND
messages. Appendix B.2 represents the header extensions format and is presented in ABNF format.

3.2.2 Metric Messages

The DASH specification [30] defines a set of five metric messages that keep track of general QoE mea-
surements during media playback. SAND provides a way to send these metrics to a metric server by
encapsulating them in five different types of SAND messages. Table 3.1 provides an overview of all DASH
metrics along with their description. The SAND metric messages which encapsulate the DASH metrics
are described in Table 3.2.

Metric Key Description

TcpList A list of TCP connections describing all outgoing TCP connections and their
respective time of opening, time of closing and handshake duration.

HttpList A list of HTTP request and response transactions. Each entry can be linked
to a TcpList entry via a tcpid attribute and describes a single HTTP transac-
tion. Successful transactions will log a trace of throughput measurements. For
non-progressive DASH streams, the type of transaction (i.e. MPD, segments,
initialization segments, . . .) will also be logged.

RepSwitchList A list of representation switch events (i.e. quality changes). A representation
switch occurs whenever the DASH media engine decides to switch to a lower or
higher representation of the media being streamed. The timings of these events
are logged as the time when the HTTP request for a different representation is
sent.

BufferLevel List of buffer occupancy level measurements during a normal (i.e. 1x speed)
media playback. The interval of measurements is up to the implementation.

PlayList A list of playback periods. A playback period is defined as the time between
consecutive user actions (i.e. play, seek) and/or stop events (i.e. pause, media
end, stalling or segment retrieve failure). For each entry the representation is
logged together with the start, end, total playback time and stop event reason.
From these entries a compact flow of information can be reconstructed.

Table 3.1: Overview of metrics collected by DASH clients.

CHAPTER 3. SERVER AND NETWORK ASSISTED DASH 14

Message Type SAND Message Name DASH Metric Key

1 TCPConnections TcpList
2 HTTPRequestResponseTransactions HttpList
3 RepresentationSwitchEvents RepSwitchList
4 BufferLevel BufferLevel
5 Playlist PlayList

Table 3.2: Overview of SAND metric messages, which DASH metrics they encapsulate and their respective
message type in the default SAND message set.

3.2.3 Status Messages

Even though status messages seem to carry similar information to metric messages, both types of messages
are distinguished by their goals. Status messages convey real time operational information of a DASH
client to one or multiple DANEs whereas metric messages provide a summary of the status of ongoing
streaming sessions. Table 3.3 provides an overview of the default SAND message set status messages.

CHAPTER 3. SERVER AND NETWORK ASSISTED DASH 15

Message Type SAND Message Name

6 AnticipatedRequests
Allows for a DASH client to signal interest in DASH media segments. The client does this by
providing a list of segment uniform resource identifiers (URIs) and a respective optional byterange
to signal interest in only a region of the resource. Clients with a sense of when they will request the
respective resource can also supply a target time. The goal is to inform a DANE in advance of which
segments with their corresponding quality level the DASH client is going to request from the origin
server.

7 SharedResourceAllocation
DASH clients that wish to cooperate with other DASH clients can signal intent for sharing network
resources. This is done by providing one or multiple DANEs, which are able to act as a resource
allocation entity, with the SharedResourceAllocation message. The contents of this message includes
a list of operation points which express quality levels that the DASH client would like to achieve.
An operation point should at least include a bandwidth budget, which represents the summed band-
width attributes of all representations being streamed. If, for example, a manifest file included two
adaptation sets representing video and audio, each with three representations ranging from low over
medium to high quality, a DASH client could, for example, generate three operations points for the
SharedResourceAllocation message as follows:

OperationPoint1 = low quality audio bandwidth + low quality video bandwidth

OperationPoint2 = medium quality audio bandwidth + medium quality video bandwidth

OperationPoint3 = high quality audio bandwidth + high quality video bandwidth

The above however, is not by the SAND specification; other combinations are valid too. Together
with the mandatory operation points, a DASH client could also signal a preferred resource allocation
strategy and a weight for the DANE to use. It is however up to the DANE to decide which strategy
to implement and apply. The weight is decided by the user and is directly used in certain strategies.
The specification includes five resource allocation strategies:

1. Basic: A minimal strategy which divides resources equally among all DASH clients (i.e.,
total bandwidth
total clients).

2. Premium privileged: Utilizes the user-provided weight to provide a better quality service
for privileged DASH clients.

3. Everybody served: The DANE will try to serve as many DASH clients by allocating them
their smallest operation points (with potential upgrade if the total available bandwidth is not
completely used).

4. Weighted sessions: Allocates DASH clients a bandwidth budget proportional to their set
weight.

5. Pricing: A special allocation strategy involving the DANE calculating the price based on the
amount of connected clients and their bandwidth requests.

8 AcceptedAlternatives
When a DASH client sends out an AcceptedAlternatives message, it signals to all receiving entities
that it is willing to accept alternative representations indicated by the provided list of sources. If,
for example, a caching DANE on the media delivery paths notices this message and has one of the
alternatives cached for the current media request, it can choose to provide the alternative instead of
forwarding the request to the origin server. Every alternative has an optional built-in hopcounter
(cf. layer 3 routing of IP) called deliveryScope , which is decreased by all in-band DANEs when

forwarded; DANEs should remove an alternative from the list once it reaches 0.

CHAPTER 3. SERVER AND NETWORK ASSISTED DASH 16

9 AbsoluteDeadline
A DASH client sends this message along with a segment request indicating the timestamp at which
it expects the segment to be fully available at the client side.

10 MaxRTT
Max round trip time signals the maximum time, in milliseconds, a request can take from the start
until the requested resource is available at the DASH client.

11 NextAlternatives
Contrary to AcceptedAlternatives, NextAlternatives allows a DASH client to signal that it is willing
to accept alternative representations for the next request being issued.

12 ClientCapabilities
This message allows a DASH client to announce to DANEs which types of SAND messages it supports.
This is done by providing a list of message types or a message set namespace.

Table 3.3: Overview of SAND status messages.

3.2.4 Parameters Enhancing Reception (PER) Messages

PER messages are sent by DANEs to DASH clients in order to improve or guide their streaming sessions.
Typically these messages occur in the context of one of the following three scenarios:

• Client assistance: PER messages are sent along with requests (as described in Section 3.3) and
provide auxiliary information which the client may or may not use to enhance its experience.

• Client enforcement: In a situation where a DANE decides to act without a DASH client specifi-
cally asking for it or when the DANE cannot comply with a user request, a PER message will be
sent instead of the requested resource signalling alternative requests the DASH client can make.

• Error cases: When a DASH client’s request is not valid, the DANE can provide a reason and/or
solution in the form of a PER message.

Table 3.4 provides an overview of all PER messages from the default SAND message set.

Message Type SAND Message Name

13 ResourceStatus
By sending this message, a DANE informs a DASH client about the availability of resources (i.e,
DASH media segments). This is done by providing a list of resources identified by either a base URL
or their respective representation ID together with a status. The status can be one of the following
three:

1. Available: All resources indicated by this message are available at the DANE who sent the
message.

2. Unavailable: Resources with this status applied to it are not available at the DANE who sent
the message.

3. Cached: Resources indicated by this status are expected to be available at the time announced
in the manifest .

CHAPTER 3. SERVER AND NETWORK ASSISTED DASH 17

14 DaneResourceStatus
This PER message is a complementary message to ResourceStatus; it provides the same information
but allows to be more explicit in its resource description. Instead of grouping a status for one
base URL or representation ID, this PER message allows to explicitly reference individual resources
(including an optional byterange indicating that the status only applies to this specific byterange
of the resource). In order to compress this PER message, it allows the use of a simplified POSIX
regular expression. The DANE has to ability to assign resources to the following status types (at
least one status type has to be present containing at least one resource):

1. Cached: All resources indicated by this message are cached at the DANE who sent the message.

2. Unavailable: Resources with this status applied to it are not available at the DANE who sent
the message.

3. Promised: Resources indicated by this status are expected to be available at the time an-
nounced in the manifest.

15 SharedResourceAssignment
DANEs who act as a resource allocation entity typically sent our this PER message to indicate how
much bandwidth DASH clients should use, depending on the resource allocation strategy implemented
by the DANE (see SharedResourceAllocation from Table 3.3). This PER message is typically sent
out to DASH clients as a response to the SharedResourceAllocation status message. The bandwidth
allocated to a DASH client is not static and can increase or decrease over time. When this happens
the DANE sends out an updated bandwidth budget to the respective DASH client in the form of a
new SharedResourceAssignment SAND message.

16 MPDValidityEndTime
Sending this PER message signals a client that the MPD being used has an expiry date. DANEs
can use this mechanism to advise clients to update their manifest information or indicate a faster
update time in the case where the media presentation type is set to dynamic with a minimum update
period set. The mechanism is mainly used in cases where a DANE notices operational problems (e.g.,
a DANE notifies clients to immediately retrieve a new MPD because the CDN hosting the DASH
media segments has gone offline).

17 Throughput
Throughput allows a DANE to inform DASH clients about a guaranteed throughput in cases where
QoS is provided on the link between the DASH client and DANE (e.g. an internal network). DASH
clients can use this information to make better assumptions regarding quality adjustments. The
DANE specifies a guaranteed throughput for a specific base URL or representation ID together with
a confidence percentage that specifies the certainty of the provided throughput estimate.

18 AvailabilityTimeOffset
This PER message allows a DANE to signal an offset, in milliseconds, which a DASH client should
apply to the segment availability start times as communicated in the MPD. This way, a DASH client
can make better informed choices regarding quality adjustments or avoid buffer underflows or, in the
worst, stalling. This message is typically used in a scenario where a DANE encounters unforseen
network conditions and tries to adjust client behaviour accordingly during a streaming session. The
offset is defined per base URL or representation ID as each resource quality can undergo a different
path of processing before becoming available (e.g.,not enough bandwidth is available for a caching
DANE to fetch higher quality segments which thus take longer to fetch when compared to lower
quality segments).

CHAPTER 3. SERVER AND NETWORK ASSISTED DASH 18

19 QoSInformation
Allows a DANE to signal QoS information which a DASH client can take into consideration when
applying its quality adaptation logic. This SAND message differs from the Throughput SAND
message in that it contains more QoS related information; the guaranteed bitrate has the same
meaning. The QoS information includes the following (optional) pieces of information:

1. Guaranteed bitrate between a DANE and DASH client

2. Maximum bitrate between a DANE and DASH client

3. Delay in milliseconds denoting the maximum packet delay with a 98 percent confidence

4. Packet loss parameter with the value set to 10
−packet loss

10

20 DeliveredAlternative
Sent in response to an AcceptedAlternatives status message (see Section 3.2.3); if the DANE sends
an alternative representation, it shall signal the DASH client by also sending a DeliveredAlternative.

21 DaneCapabilities
DaneCapabilities follows the same structure as the ClientCapabilities status message (see Table 3.3).
By sending this PER message, the DANE indicates to receiving DASH clients which SAND messages
it supports.

Table 3.4: Overview of SAND PER messages.

3.2.5 Parameters Enhancing Delivery (PED) Messages

At the time of writing, the SAND specification does not include any PED messages for the default SAND
message set. Default message set additions however are possible in the future via the reserved ISO
message types. Private implementations can also opt to implement their own PED messages with the
reserved private message types.

3.3 Message Exchange

So far we have discussed the different types of entities involved in a SAND communication process, what
types of messages exist and how they can be formatted. The SAND specification has additionally defined
which transport protocols to use to carry the aforementioned messages. These are officially referred to
as SAND communication channels.

3.3.1 SAND Communication Channels

The SAND specification defines the following three channels:

• urn:mpeg:dasg:sand:channel:http:2016 : SAND messages are transferred as XML formatted

messages through HTTP request and response bodies

• urn:mpeg:dasg:sand:channel:header:2016 : SAND messages are transferred as HTTP header

extensions for HTTP request and response objects concerning media segments

• urn:mpeg:dasg:sand:channel:websocket:2016 : SAND messages are transferred as XML for-

matted messages through a websocket in data frame messages set to the text type

Of the aforementioned channels, SAND entities shall support both the HTTP and header channels; the
websocket channel is an optional transport protocol. The SAND specification allows for implementations
to utilize additional transport protocols.

When utilizing the HTTP and header communication channels, the following setup is mandatory:

CHAPTER 3. SERVER AND NETWORK ASSISTED DASH 19

• Metric message shall be sent using an HTTP POST request; headers are allowed for small metrics
(it is up to the implementation to decide what small metrics entail)

• Status messages shall utilize headers unless a DANE is directly being contacted via URL/IP in
which case HTTP POST shall be used

• PER messages are always retrieved using HTTP GET

• No specific rules are mentioned for PED messages

As mentioned in Section 3.2.1, some exceptions to this setup apply. The AcceptedAlternatives and
AbsoluteDeadline status messages shall always be sent using HTTP header extensions. The DeliveredAl-
ternative PER message shall not be retrieved as an XML formatted message via HTTP GET, but rather
be delivered as an HTTP header extension together with the alternative representation.

3.3.2 Channel Signaling

There exist two official ways through which a DANE may make its presence known; it is however not
limited to these methods. The first way is through adding a SAND channel to the manifest file with the
sand:Channel element which includes the following three attributes:

• id : Specifies an identifier for the communication channel

• schemeIdUri : Specifies the communication channel protocol by urn (see Section 3.3.1)

• endpoint : Specifies the endpoint URI for the given communication channel protocol

Of previous three attributes, only the schemeIdUri and endpoint attributes are mandatory.

The second way for a DANE to make its presence known is by inserting the header extension
MPEG-DASH-SANDChannel , providing the same information as if signalled via the MPD. This is typically

used by DANEs on the media delivery path who wish to partake in the communication.

3.4 Discussion

3.4.1 Security Considerations

When utilizing the default recommendations for message exchange (i.e., HTTP and header extensions),
no security considerations were taken into account when designing the specification. A DANE injecting
SAND headers into an established connection could be seen as a positive form of a man-in-the-middle
(MITM) attack [32]. This also means that entities are capable of changing messages as they see fit in an
unregulated manner. SAND messages do not carry any executable content, they do however reference
resources which could contain executable content. It is up to the implementation to actively take this
into account when fetching resources.

It is possible to protect the confidentiality of a SAND message by encrypting it using the XML en-
cryption syntax and processing rules [33]. Most traffic nowadays moves over encrypted HTTP (i.e.,
HTTPS) which inherently means that messages and media segments are encrypted in an end-to-end fash-
ion. When HTTPS is used for SAND message delivery instead of HTTP, intermediate DANEs on the
media delivery path will not be able to intercept the messages and will therefore not be able to enhance
the streaming session.

Another security consideration to take into account when deploying SAND in a browser scenario utiliz-
ing the default recommendations, is Cross-Origin Resource Sharing (CORS). Modern web browsers
nowadays have a built-in mechanism that restricts certain types of HTTP communication to other do-
mains than the origin; browsers divide these requests in two categories: simple requests and preflighted
requests. Simple requests are HTTP requests which are typically used during browsing (e.g., HTTP GET
or HTTP POST), it is important that these requests do not specify any other headers apart from those
set by the browser (e.g., connection, user-agent, . . .). In the event a cross-site request is made which
does not fall under the previous rules, the browser will check if the request can be made by first doing an
HTTP OPTIONS request in order to determine whether the actual request to be made is safe to send.

CHAPTER 3. SERVER AND NETWORK ASSISTED DASH 20

The domain being contacted has to allow cross-site communication by specifying which domains, other
than itself, are allowed. This is done via the Access-Control-Allow-Origin header. If the cross-site

domain also sends back non-default headers (such as the SAND headers), it has to specify exactly which
of those the client browser may access via the Access-Control-Expose-Headers header. Without this

header, a DASH client implementation in the browser would not be able to retrieve the SAND header
extension values [34].

3.4.2 Discrepancies

While working with SAND, a number of discrepancies from the specification were brought to light. Table
3.5 provides an overview of these, together with their respective page numbers as found in [29]. An
attempt was made to contact the people involved with SAND standardization by submitting an issue on
their SAND conformance test repositories on Github2; as of the time of writing, no response has been
provided yet.

2https://github.com/Dash-Industry-Forum/SAND-Test-Vectors/issues/1

CHAPTER 3. SERVER AND NETWORK ASSISTED DASH 21

Page Number(s) Description

8, 26, 33 Common envelope → SandMessage → messageID: XSD enforces the
use of messageId by setting a use="required" flag whilst the documentation

specifies a cardinality of 0..1 . The documentation on messageId in HTTP
header extensions specifies that messageId is not required.

9, 10, 37, 38, 39 Metric naming: All status and PER messages use the same name as
their subsection title in their respective XML or HTTP header extension for-
mat. All metrics use the DASH specification titles as their naming which
does not follow the SAND XSD schema. Following metrics fall under pre-
vious description: TCPConnections , HTTPRequestResponseTransactions ,

RepresentationSwitchEvents .

11, 34 AnticipatedRequests → targetTime: Documentation requires targetTime
to be of the date-time type whilst the XSD expects an unsignedLong.

13, 34 AcceptedAlternatives → alternative: Documentation mentions a cardi-
nality of exactly one but the XSD mentions 1...N

15, 34, 35 NextAlternatives → alternative: Documentation mentions a cardinality of
exactly one but the XSD mentions 1...N

16, 35 ResourceStatus → resourceInfo: Documentation specifies a resourceInfo
element for both baseURL and representation ID cases whilst the XSD differ-
entiates between the two by specifying following elements: resourceURLInfo

and resourceRepresentationInfo .

17 ResourceStatus→ resourceInfo→ repId: repId represents the represen-

tation ID for which the caching status applies. The MPEG-DASH specification
mentions the following about representation IDs: “specifies an identifier for this
Representation. The identifier shall be unique within a Period unless the Rep-
resentation is functionally identically to another Representation in the same
Period.” [30]. We can never know exactly which representation we target with
the provided repID . If, for example, we were to send a ResourceStatus SAND

message including the representation ID “1” and the manifest were to contain
two periods, each containing a representation with the ID set to “1”, our client
would never be able to match the SAND message representation ID to the
correct representation due to ambiguity.

24, 37 DaneCapabilities → supportedMessage (→ messageType): Documen-
tation specifies the element/attribute messageType whilst the XSD says noth-
ing about this. The similar ClientCapabilities message with an almost equal
message structure does define the messageType attribute in the XSD. This
discrepancy was addressed in the first amendment of the specification [35].

26, 27 Ignoring integer-list ABNF for ClientCapabilities example: Header
extension format integer-list does not match the example for

SAND-CientCapabilities

29 Sand channel endpoint attribute: Required in XSD but not in specification
description

Table 3.5: SAND specification discrepancies overview.

Chapter 4

POC Out of band smart resource
allocation entity

In order to provide answers to the research questions asked in Section 1.1, we will create a proof of
concept (POC) utilizing SAND and a MPEG-DASH player. SAND - as explained in Chapter 3 - is a
recent specification for which DASH-IF interoperability guidelines only recently came out (21 december
2018) after our implementation work had already begun (see Section 6.2). For this POC we will therefore
have to figure out the best way to deploy SAND (see Section 4.2).

As our use case in this POC, we will utilize the shared network scenario as depicted in Figure 4.1. A
shared network scenario typically takes place in a household, apartment, airport, etc. . . where multiple
clients concurrently consume DASH content. Within this shared network we will deploy a DANE that
will be addressed as the support DANE from now on. This support DANE will provide two functions
for all DASH clients communicating with it:

1. Bandwidth guidance for MPEG-DASH players within the shared network

2. Smart caching (i.e., prefetching DASH segments) of the same MPEG-DASH content being con-
sumed by multiple MPEG-DASH players within the shared network

The support DANE will thus, take upon itself the roles of a resource allocation entity as well as a
smart caching entity. The resource allocation role will divide the available network bandwidth accord-
ing to one of the SAND allocation strategies (see the SharedResourceAllocation message type in Section
3.2.3) among the connected clients; the amount of bandwidth allocated to a client will henceforth be
referred to as the allocated bandwidth budget expressed in bits per second. The smart caching role
will make the DANE a web caching entity specifically aimed at DASH content being consumed within
the shared network.

It is important to note that our POC will be based around guidance and not enforcement. The goal
of this POC (see Section 1.1) is to see if SAND alone suffices to firstly reach fair play within a shared
network and secondly to see if overall bandwidth reduction can be achieved in the scenario where mul-
tiple DASH players are consuming the same content over a shared network connection. As such, we
assume that DASH clients within our shared network scenario are willing to play fairly by abiding to the
recommendations the DANE sends them.

22

CHAPTER 4. POC OUT OF BAND SMART RESOURCE ALLOCATION ENTITY 23

Figure 4.1: A network overview depicting a typical home setup with multiple DASH clients consuming
DASH content from a single origin server on the Internet. The DANE depicted in this setup performs the
roles of resource allocation entity as well as smart caching entity. The access link between the gateway
and the Internet is typically referred to as the last mile.

4.1 Implementation Considerations

For our POC to work, we have to consider how to implement SAND in a DASH client and how to create
a DANE. Sections 4.1.1 and 4.1.2 cover these topics.

4.1.1 DASH Client

Our POC requires DASH clients with the ability to process DASH streams as well as communicate
with DANEs via SAND messages. Since MPEG-DASH is a standardized protocol as well as one of the
most popular HAS protocols in use on the web (i.e., website media players playing DASH streams), we
will focus on web based MPEG-DASH solutions that utilize the Media Source Extensions (MSE)
offered by modern browsers1 [36] to generate media streams using JavaScript. This gave us three popular
choices2:

1. Implement our own MPEG-DASH player with SAND support (for our purposes this could be
a headless client that only fetches DASH content but does not play it back)

2. Use the DASH-IF reference player: Dash.js V3.0.03

3. Use the Google adaptive streaming player: Shaka Player4

Of these three options, option one would be the least desirable but the best fallback option in case op-
tions two or three do no work out. The reason for this is that adaptive streaming players such as Shaka
Player and Dash.js have enjoyed many years of development and have long left their childhood stages of
development and are considered to be production ready players at the time of writing.

Both the Dash.js and Shaka Player are considered to be good foundations upon which we can extend
and implement SAND. Both players are implemented in JavaScript and offer a limited plugin system for
extending their behaviour without the need for altering core components. As explained in Section 3.1.1,

1At the time of writing, MSE is supported by all browsers except iOS Safari [https://caniuse.com/#feat=mediasource]
2Other MPEG-DASH players such as the Bitmovin player exist[https://bitmovin.com/video-player/], but only the men-

tioned MPEG-DASH players are open source.
3https://github.com/Dash-Industry-Forum/dash.js
4https://github.com/google/shaka-player/

CHAPTER 4. POC OUT OF BAND SMART RESOURCE ALLOCATION ENTITY 24

SAND however requires a more fundamental change in the way the client model works. Luckily, Dash.js
and Shaka Player are released under the open source licenses of BSD-35 and Apache 2.06 respectively; in
other words, we are allowed to change both projects in such a way that fits our needs. Table 4.1 sums
up the biggest differences and most important features supported by both players.

Dash.js Shaka Player

Supported protocols MPEG-DASH, MSS MPEG-DASH, HLS

ABR logic throughput7, drop frames8,
bitrate switch history9, BOLA10

and abandonment11

throughput

Segment type support index- and range-based index-based

Multicodec support12 Yes No

Fault-tolerant13 Yes Yes

Preload functionality14 Yes No

Livestream support Yes Yes15

Encrypted content
support

Yes Yes

Offline storage16 No Yes

Table 4.1: Comparison of the biggest features and supported elements between Dash.js and Shaka player.

When considering Dash.js versus Shaka Player for our POC, we will go with Dash.js. The reason Dash.js
is preferred above Shaka Player is because of its extensive and complex adaptive bitrate (ABR) system.
The ABR logic summed up in Table 4.1 - also known as ABR rules in Dash.js terminology - is vastly
more complex than the one implemented by Shaka Player. Instead of operating on only one type of
ABR logic, Dash.js implements a system of primary and secondary ABR rules. Only one primary rule
always executes, this is typically the rule which decides if a quality switch is needed in a normal scenario;
these rules include the throughput rule and BOLA rule or a hybrid model which combines the strengths
of both previous rules. The secondary rules only kick in in specific scenarios such as too many frame
drops due to insufficient CPU processing power, too many quality switches due to detected oscillation or
the imminent treat of stalling. Together, the primary and secondary ABR rules form a complex system
which can easily handle many different situations (e.g., switching from a cabled network connection to
a wireless network connection). The internal system of Dash.js also allows for extra rules to be added
whilst keeping the other ABR rules intact and operational. In other words, the system is flexible enough
to allow transparent changes to ABR logic without the need of modifying core components in such a way
that could introduce incorrect playback behaviour.

5https://opensource.org/licenses/BSD-3-Clause
6https://opensource.org/licenses/Apache-2.0
7Throughput logic utilizes the exponentially weighted moving average (EWMA) of past segment throughputs to decide

whether to change streaming quality.
8Drop frames utilizes dropped video frames as an indicator that the client does not have the required processing power

to decode all video frames in real time, thus preferring lower quality representations. This rule kicks into action whenever
more than 15% of frames are dropped.

9Bitrate switch history keeps track of all bitrate switches during playback. This ABR logic will prevent rapid oscillations
if many bitrate switches are detected.

10Buffer Occupancy based Lyapunov Algorithm (BOLA) [37]: as buffer occupancy drops, BOLA will prefer lower bitrate
segments; as buffer occupancy grows, it will prefer higher bitrate segments.

11Abandonment logic keeps track of segments being downloaded, whenever a stall is imminent, the rule will kick in and
switch to a safer bitrate as well as cancel the original request.

12DASH manifests can contain multiple periods each with multiple adaptationsets. These adaptationsets however do not
require to use the same codecs as the previous period. Dash.js allows periods to use different codecs whilst Shaka Player
does not.

13Manifests can contain wrong information about timings, references, etc . . .
14Ability to start processing DASH content before having access to the HTML video DOM element.
15Only index based livestreams are supported.
16Ability to store content on the host for later use (e.g., Youtube offline videos or Netflix offline videos).

CHAPTER 4. POC OUT OF BAND SMART RESOURCE ALLOCATION ENTITY 25

4.1.2 DANE

At the time of writing, no public DANE implementations exist yet. Our POC requires a DANE that
gets contacted in an out-of-band fashion by DASH clients within the same network. It should also
adhere to the SAND specification concerning exchanged messages and the communication protocol.
This means that HTTP GET, HTTP POST and HTTP headers will be used for communication between
the DASH clients and the DANE. We will need to create a system which utilizes HTTP as its transport
protocol and insert a mechanism to keep track of clients their state. Many such mechanisms exist nowa-
days, both simple and complex ones; the simplest method of keeping track is by letting clients identify
themselves through the use of a unique identifier (ID), which could for example be inserted as an HTTP
header. These are simple requirements that many modern programming languages can solve. As such,
for our POC, we considered the following two languages: JavaScript (Node.js engine17) and Python.

Both options are nowadays very popular programming languages for purposes such as network appli-
cations. Both JavaScript and Python come with package managers - NPM18 and PIP19 respectively -
that include an abundance of ready-to-use libraries. Out-of-the-box Node.js supports web oriented ap-
plications; Python on the other hand has many libraries for manipulating web traffic as well as mature
web frameworks such as Flask20 and Django21. Under the hood, JavaScript is a single threaded process
using an asynchronous system to introduce concurrency. Python on the other hand offers programmers
access to both threads as well as asynchronous behaviour. In terms of performance, both are suitable for
handling incoming web traffic. When considering JavaScript versus Python, there is no real reason to
pick one above the other for the purposes of this POC. We will however take the path of Python as we
had previous experience with web applications run through Python web frameworks such as Flask.

4.2 Communication Workflow

The SAND specification provides a well defined set of messages which we are able to leverage in our POC
without the need of defining new messages. However, the specification leaves its implementation open
in terms of communication flow. In other words, there are no guidelines defining how SAND should be
initiated, which messages should be exchanged and when, or at what frequency entities should commu-
nicate with each other.

As such, we shall define guidelines for our POC that are specifically made for SAND message exchange
in shared network environments. It is important to note that other environments, such as, for example,
cloud-based DANEs, might require a different approach in terms of message exchange frequency and
authentication. We came up with two communication workflows, bandwidth guidance and smart
caching, detailed in respectively Sections 4.2.3 and 4.2.4. The handshake workflow explained in Section
4.2.2 is used by both previously mentioned workflows to initiate a SAND session.

4.2.1 Polling-based Client Identification

Client identification plays an important role when considering the resource allocation and smart
caching roles that the DANE will take upon itself. In order to allocate bandwidth to DASH clients or
prefetch DASH content being consumed by multiple DASH players, the DANE has to have some notion
of which DASH clients are in the shared network as well as which of them are active. If our setup were
to use Websockets as indicated as a possible message channel in the specification (see Section 3.3.1), the
DANE would be able to identify and discriminate between active and inactive DASH clients purely on
the WebSocket connection from a DASH player to the DANE. An open connection would indicate an
active DASH client willing to communicate. We however opted to not use WebSockets because we wanted
to follow the specification which mandates minimal support for HTTP and HTTP headers; adding Web-
Socket support would mean an added layer of complexity which does not add anything overall to the
project.

Our POC however, will solely be built upon the HTTP and header channels. Because these two channels

17https://nodejs.org/
18https://www.npmjs.com/
19https://packaging.python.org/guides/tool-recommendations/
20https://github.com/pallets/flask
21http://www.djangoproject.com/

CHAPTER 4. POC OUT OF BAND SMART RESOURCE ALLOCATION ENTITY 26

utilize the HTTP transport protocol, they inherit a stateless design. Therefore we will introduce client
identification by inserting an extra header in the communication process: Sand-Client-ID: <unique identifier> .

It is worth noting that this unique identifier be unique within the shared network of DASH clients, which
is why the following Universally Unique Identifier (UUID) versions are recommended for our POC: ver-
sion 3, version 4 or version 5 [38].

With this ID alone the DANE is able to identify clients, but it can not yet discriminate between ac-
tive and inactive clients. A solution for this problem is implementing a polling system; DASH clients
will poll the DANE every two seconds. During this polling the DANE has the opportunity to exchange
awaiting SAND messages; a poll by a client also indicates that it is in an active state. We define active
state as follows: fetching media segments and not paused (i.e., playing DASH content and not having
the remaining playback content in buffer). The support DANE shall prune all DASH clients who have
not polled it in the last thirty seconds. By doing so, we achieve a best effort mechanism for active client
identification.

4.2.2 Handshake

A handshake is defined as the first interaction between a DASH client and the support DANE. During this
process the DASH client notifies the DANE of its presence by making a HTTP POST request containing
its capabilities in the form of a ClientCapabilities SAND message. The DANE will proceed by adding
the client to its collection of active clients and will respond with a HTTP 200 that also contains the
MPEG-DASH-SAND header, a header defined by the SAND specification to let a DASH client know that

the DANE has messages queued for it. The message in question is a DaneCapabilities SAND message to
notify the DASH client of the DANE’s abilities, which is retrieved by performing an HTTP GET request
to the URL provided in the respective header.

Figure 4.2 depicts a sequence diagram for a handshake between a DASH client and the support DANE.
The provided HTTP request and response bodies contain simplified examples to make it more clear what
is being transmitted. In our POC, all support DANEs will be known at the beginning of a DASH stream.
If, however, in a future work a support DANE joins the communication process at a later stage, a hand-
shake will be initiated at that point. It is worth noting that in a realistic scenario, the SAND message
exchange and DASH content fetching - depicted as the two loop groups in Figure 4.2 - can occur in an
interwoven fashion. It is also worth mentioning, that the polling loop does not fully follow the SAND
specification. Because our implementation implements polling and message announcements on the same
URI, the DANE cannot differentiate between a client polling and a client fetching a SAND messages
announced via the MPEG-DASH-SAND header. As such, in case an awaiting message is available during
a polling event, the implementation will avoid the extra round-trip-time required by fetching a message
announced by previous header. A fix to this would be to use different URIs.

Table 4.2 provides an overview of all SAND messages that are required to be supported by both the
DASH client and the DANE in order for a handshake to succeed.

Message Type SAND Message Name

12 ClientCapabilities
21 DaneCapabilities

Table 4.2: Overview of the required SAND messages for a handshake to work.

CHAPTER 4. POC OUT OF BAND SMART RESOURCE ALLOCATION ENTITY 27

Figure 4.2: Network sequence diagram depicting the flow of messages during and after a handshake
between a DASH client and the DANE. Actual HTTP headers and bodies contains simplified examples.

CHAPTER 4. POC OUT OF BAND SMART RESOURCE ALLOCATION ENTITY 28

4.2.3 Bandwidth consumption guidance

Bandwidth guidance is provided by the DANE which keeps track of all DASH clients within the shared
network. The sequence diagram in Figure 4.3 depicts how this process works. A DASH client shows
intent to receive bandwidth guidance by sending the SharedResourceAllocation SAND message to the
DANE. This message shall contain the operation points at which the DASH client wishes to operate.
The DANE will respond with a SharedResourceAssignment SAND message containing the maximum
allowed bandwidth budget for that client. With the polling system explained in Section 4.2.1, a DASH
client notifies the DANE it is still in an active state and thus requires to be part of its bandwidth guid-
ance program. Subsequently, all DASH clients participating in the bandwidth guidance program will
be notified of changes via the same polling mechanism through which the DANE can send an updated
bandwidth budget.

Table 4.3 provides an overview of all required SAND messages that are to be implemented by the DANE
and all DASH clients participating in the bandwidth guidance program.

Message Type SAND Message Name

7 SharedResourceAllocation
12 ClientCapabilities
15 SharedResourceAssignment
21 DaneCapabilities

Table 4.3: Overview of the required SAND messages for bandwidth guidance to work.

CHAPTER 4. POC OUT OF BAND SMART RESOURCE ALLOCATION ENTITY 29

Figure 4.3: Network sequence diagram depicting the flow of messages during the bandwidth guidance of
a DASH client by the DANE. Actual HTTP headers and bodies contain simplified examples.

4.2.4 Smart Caching

Smart caching builds further upon the bandwidth guidance role. A DASH client provides one extra piece
of information in the SharedResourceAllocation SAND message, namely the MPD URL for the DASH
content being consumed. Due to this, the DANE is capable of knowing what a particular DASH client
is consuming. In the event multiple (i.e., at least two) DASH clients consume the same DASH content,
the DANE will see this as a trigger to start prefetching and locally caching the highest quality segments
for the respective DASH content.

During playback, DASH clients notify the DANE of anticipated segments using the AnticipatedRequests
SAND message. In our POC, DASH clients shall notify the support DANE of the next 20 anticipated
segment requests. DASH clients shall do this by keeping track of the following parameters: current
index (i.e., the last downloaded segment available in the buffer) and the highest sent anticipated
request index. A new AnticipatedRequests SAND message shall be sent every time:

current index > (highest anticipated request index− total anticipated segments

2
)

The highest anticipated request index shall also be reset every time a seek event happens such that the
DASH client can report new anticipated requests and thus allow the DANE to support seeking.

CHAPTER 4. POC OUT OF BAND SMART RESOURCE ALLOCATION ENTITY 30

Whenever the DANE detects that one of the DASH clients’ anticipated request resources is available,
it will answer the respective DASH client with a DaneResourceStatus SAND messsage which notifies
the DASH client of these cached resources. A DASH client is then able to fetch the resource in the
highest available quality from the DANE instead of from the origin server. In the event the DANE has
all segments cached, it shall notify the client about this through the ResourceStatus SAND message by
indicating that the full resource group is cached.

Figure 4.4 depicts previous process as a sequence diagram. It is worth noting that the two loops de-
picted in this diagram can occur interchangeably. Table 4.4 provides an overview of all messages involved
in smart caching; the DANE and the DASH clients are expected to at least support these in order to
participate in smart caching.

Message Type SAND Message Name

6 AnticipatedRequests
7 SharedResourceAllocation
12 ClientCapabilities
13 ResourceStatus
14 DaneResourceStatus
15 SharedResourceAssignment
21 DaneCapabilities

Table 4.4: Overview of the required SAND messages for smart caching to work.

CHAPTER 4. POC OUT OF BAND SMART RESOURCE ALLOCATION ENTITY 31

Figure 4.4: Network sequence diagram depicting the flow of messages during smart caching between a
DASH client and the DANE. Actual HTTP headers and bodies contains simplified examples.

CHAPTER 4. POC OUT OF BAND SMART RESOURCE ALLOCATION ENTITY 32

4.3 Dash.js SAND Implementation

As explained in Section 4.1.1, we shall expand upon Dash.js v3.0.0 to implement the SAND behaviour
explained in Section 4.2. Dash.js is a vastly complex system consisting of multiple parts; unfortunately,
there is no official documentation which helps in understanding how everything is built. Before we began
implementing, we hence had to understand how Dash.js is constructed and where to integrate our POC
functionality; this is further described in Sections 4.3.1, 4.3.2 and 4.3.3.

4.3.1 Architecture

When looking at the Dash.js source code, we notice that the code is structured in different systems as
follows:

• Core

• DASH

• MSS

• Streaming

Core

The core provides global functionality to the Dash.js project. This includes a factory subsystem and
an event bus. The factory subsystem is an implementation of the creational design pattern called fac-
tory method [39]; Dash.js uses the object-oriented paradigm for its implementation utilizing JavaScript
functions as classes. The factory subsystem allows for creation of internal objects and subsequently in-
troduces implementation hiding; classes are required to define an object that represents the function calls
that may be used outside of the class (see pseudocode example in Listing 4.1).

1 function class() {
2 function a(){}
3 function b(){}
4 function c(){}
5

6 config = {
7 a:a,
8 b:b
9 }

10

11 return config;
12 }
13 factory .addNewClass("class_name", class);
14

15 classObject = factory.createClassInstance("class_name");
16 classObject.a() ; // Works

17 classObject.b(); // Works

18 classObject.c() ; // Undefined

Listing 4.1: Pseudocode example of the Dash.js factory subsystem.

The event bus allows an internal object to trigger an event coupled with data. By doing so, other systems
active within Dash.js receive the opportunity to also act on the event or change the data sent with the
event trigger (see pseudocode example in Listing 4.2). This implementation allows for a lot of flexibility,
but also makes it harder to track the exact behaviour of Dash.js.

1 function classA() {
2 function init() {
3 console. log("Hello ");
4 eventBus.trigger("example_trigger", {text:"world"});
5 }
6

7 setup();
8 config = {
9 init : init

10 }
11 return config;
12 }

CHAPTER 4. POC OUT OF BAND SMART RESOURCE ALLOCATION ENTITY 33

13

14 function classB() {
15 function setup() {
16 eventBus.on("example_trigger", handler);
17 }
18

19 function handler(data) {
20 console. log(data.text) ;
21 }
22

23 setup();
24 return {};
25 }
26 factory .addNewClass("classA", classA);
27 factory .addNewClass("classB", classB);
28

29 classAObject = factory.createClassInstance("classA");
30 classBObject = factory.createClassInstance("classB"); // is required to be initiated so the eventBus has notion

of the handler existing

31 classAObject.init () ; // Will display "Hello world" in the console on two seperate lines

Listing 4.2: Pseudocode example of how to use the Dash.js factory subsystem.

DASH and MSS

The DASH and MSS systems provide all the required functionality to support both respective adaptive
streaming formats. For the purposes of our POC, the MSS subsystem will be ignored as we are only
interested in MPEG-DASH content and SAND.

The most important parts of the DASH system are the DashAdapter , DashHandler and DashMetrics .

The DashHandler provides necessary information about a manifest, e.g., what segment index lies at
timestamp X, what is the duration of the manifest, what qualities exist, how many adaptations exist for
stream type video, audio or subtitles, etc. . . Internally it makes use of different parsing systems which
utilize the XML data provided in the manifest file. The DashAdapter on the other hand is directly used

by the Streaming system to provide the necessary information to make playback possible; it will provide
the streaming system with VOs22 containing the information needed to make HTTP requests to the
right resources. Finally, DashMetrics is used to keep track of the metrics defined in the MPEG-DASH
specification [30].

Streaming

The streaming system contains the main bulk of logic needed for adaptive streaming to take place. It
contains the following subsystems: ABR logic, a protection system for DRM protected streams, a HTTP
loader (based on XHR23 or Fetch24 depending on browser support) for downloading DASH/MSS content,
a thumbnail system and a text system for subtitles. The streaming system hooks directly into the HTML
<video> element provided to Dash.js during setup and couples internal logic to the possible DOM events,

such as play, pause, seek, rate change, error, etc. . . The streaming subsystem also keeps track of the buffer
which is overseen by the ABR logic and provides scheduling so that it can be filled. Scheduling consists
out of a two step procedure which happens for each type of media (i.e., video, audio and subtitles):

1. ABR logic is activated which in turn fires off the primary and secondary ABR rules (see Section
4.1.1) which decide what adaptation quality is needed for future segments (only happens for video
and audio media types)

2. The scheduler requests the appropriate VO objects from the DASH or MSS system, which it then
passes along to the HTTP loader subsystem which will handle the actual content fetching

This scheduling steps are repeated every 500msec with the second scheduling step taking place if and
only if the previous segment was successfully retrieved, was aborted by the ABR logic system or the

22Variable Objects (VOs) are Javascript objects which consist of keys and values, the keys are represented by a variable
which is used to access its value. It can be compared to a C++ Map[http://www.cplusplus.com/reference/map/map/] or
a Python Dictionary[https://docs.python.org/3.7/tutorial/datastructures.html#dictionaries].

23https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
24https://developer.mozilla.org/en-US/docs/Web/API/Fetch API/UsingF etch

CHAPTER 4. POC OUT OF BAND SMART RESOURCE ALLOCATION ENTITY 34

connection was aborted due to error. Dash.js, in other words, implements a back-to-back scheduler for
its segments.

4.3.2 Execution flow

Dash.js’ event based system, unfortunately, makes it difficult to trace execution logic. As such, we tried
to examine what happens at initialization based on the methods called and events triggered. Listing 4.3
shows a simplified execution path from initialization until scheduling happens.

1 Dash.js Initialization
2 −−−−−−−−−−−−−−−−−−−−−−
3 player gets created with dashjs.Mediaplayer.create()
4 player is initialized with DOM element & MPD URL −> Mediaplayer.initialize
5 −> calls attachView
6 −> sets the DOM element and checks for Protection, Metric, MSS subsystems
7 −> calls initializePlayback
8 −> creates playback controllers: mediaController, streamController, playbackController, abrController,

textController
9 −> streamController load of MPD is called IF ‘‘source’’ is set , which it is not by this point

10 −> calls attachSource
11 −> sets the ”source” object parameter in MediaPlayer (i.e ., the MPD URL)
12 −> calls initializePlayback
13 −> streamController load called since ‘‘ source ’’ is set (steamController is Singleton)
14 −> calls manifestLoader.load
15 −> performs httpLoader.load on a MPD TextRequest VO (contains request parameters for a MPD)
16 −> on success parses contents
17 −> passes parsed contents to xlinkController.resolveManifestOnLoad
18 −> performs XML xlinking
19 −> triggers XLINK READY with ‘‘manifest’’ as payload
20

21 XLINK READY event handlers
22 −−−−−−−−−−−−−−−−−−−−−−−−−−
23 ManifestLoader.onXlinkReady
24 −> triggers INTERNAL MANIFEST LOADED with ‘‘manifest’’ as payload
25

26 INTERNAL MANIFEST LOADED event handlers
27 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
28 ManifestUpdater.onManifestLoaded
29 −> calls update with parsed ‘‘manifest ’’ payload
30 −> manifestModel.setValue called with manifest as param
31 −> Sets internal ‘‘ manifest ’’ value with given manifest
32 −> triggers MANIFEST LOADED event with ‘‘data’’ containing the manifest
33 −> checks and sets manifest refresh timers
34 −> triggers MANIFEST UPDATED event with ‘‘manifest’’ payload
35

36 MANIFEST LOADED event handlers
37 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
38 No internal system utilizes this (i .e ., the event appears to be defined for debugging or is no longer in use)
39

40 MANIFEST UPDATED event handlers
41 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
42 DVBErrorsTranslator.onManifestUpdate
43 −> sets internal MPD value with payload
44

45 MetricsCollectionController .update
46 −> Reloads/sets metrics related controllers
47 −> Triggers METRICS INITIALISATION COMPLETE with no payload
48

49 StreamController.onManifestUpdated
50 −> calls DashAdapter.updatePeriods with manifest as param
51 −> sets voPeriods (manual parsing of available period data)
52 −> gathers streamInfo
53 −> gathers mediaInfo
54 −> Tries to detect SegmentTimeLine functionality
55 −> initializes BaseURLController with manifest
56 −> calls baseURLTreeModel.update with the manifest
57 −> calls getBaseURLCollectionsFromManifest with manifest as param
58 −> sets internally used baseURLs correctly
59 −> calls baseURLSelector.chooseSelector
60 −> selector is set to basicSelector
61 −> TimeSyncController initialized with UTCTimings (only filled in if the MPD is live or availabilityStartTime

is set)

CHAPTER 4. POC OUT OF BAND SMART RESOURCE ALLOCATION ENTITY 35

62 −> calls attemptSync (with the provided UTCTimings)
63 −> tries to check what sort of synchronization feature can be used; will fail in simple cases and

fallback to device time (i .e ., when using VOD)
64 −> calls onComplete
65 −> checks for Date HTTP header
66 −> completeTimeSyncSequence called
67 −> triggers TIME SYNCHRONIZATION COMPLETED
68

69 TIME SYNCHRONIZATION COMPLETED event handlers
70 −−−
71 TimelineConverter.onTimeSyncComplete
72 −> Performs a sanity check on time related synchronization features (only needed for live MPDs)
73

74 StreamController.onTimeSyncCompleted
75 −> checks for protection controller and triggers PROTECTION CREATED (i.e., DRM−related)
76 −> calls composeStreams
77 −> gathers streamInfo DashAdaper.getStreamsInfo()
78 −> gets all periods as a VO
79 −> loops over all StreamInfo (= MPEG−DASH \textit{period} object) objects and creates ”streams” or

updates them
80 −> calls Stream. initialize
81 −> Sets up the stream with given streamInfo (to be used later)
82 −> dashMetrics.addManifestUpdateStreamInfo called for current streamInfo
83 −> searches for start time if no stream is active (which is the case at initialization)
84 −> calls switchStream
85 −> triggers PERIOD SWITCH STARTED with ”fromStreamInfo” and ”toStreamInfo” objects
86 −> if an old stream exists ; calls oldStream.deactivate
87 −> calls playbackController. initialize with the active stream info
88 −> connects DOM event listeners to internal system
89 −> call preloadstream
90 −> calls activateStream
91 −> calls stream.ativate
92 −> calls initializeMedia
93 −> calls checkIfInitializationCompleted
94 −> triggers STREAM INITIALIZED
95 −> triggers STREAMS COMPOSED
96

97 STREAM INITIALIZED event handlers
98 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
99 ScheduleController.onStreamInitialized

100 −> starts scheduling logic

Listing 4.3: High level overview of a Dash.js execution flow after being initialized for VOD DASH content.

4.3.3 SAND Architecture and Hooks

Based on the findings from Sections 4.3.1 and 4.3.2, we came up with an architecture for our SAND
functionality as well as the places within the Dash.js software architecture where we should hook in our
SAND logic.

Architecture

For our POC we shall introduce a new Dash.js system next to the already existing core, DASH, MSS and
streaming systems; this system shall be named sand and is depicted in Figure 4.5 and further explained
in Table 4.5.

CHAPTER 4. POC OUT OF BAND SMART RESOURCE ALLOCATION ENTITY 36

sand/

constants/

SandConstants.js

SandContentConstants.js

models/

CacheModel.js

DaneModel.js

net/

DaneCommunicator.js

SandRequestModifier.js

parser/ SandMessageParser.js

vo/ Dane.js

Sand.js

SandController.js

SandErrors.js

SandEvents.js

Figure 4.5: Sand system archictecture

CHAPTER 4. POC OUT OF BAND SMART RESOURCE ALLOCATION ENTITY 37

File Descriptions

SandConstants.js Defines constants for internal workings pertaining to SAND.

SandContentConstants.js Defines constants related to SAND messages. This file provides a
class that maps the default SAND message set names to their
message type. It provides the means to access both through
getMessageNameById() and getIdByMessageName() .

CacheModel.js Provides the necessary functionality about cached resources to
internal systems. Whenever a system requires the knowledge
about whether or not a certain segment is cached at the DANE
side, calling isSegmentCached(id) will provide the answer in

the form of a boolean.

DaneModel.js Keeps track of an individual DANE known to the DASH client.
DaneModel objects keep track of awaiting messages signaled via

the MPEG-DASH-SAND header of the respective DANE and
process these in a batched manner such that it does not stress
the scheduling logic of the streaming system. In the event
incoming messages get parsed correctly by the
SandMessageParser , an internal event by the name

SAND MESSAGE LOADED will be triggered with the parsed
contents as payload.

DaneCommunicator.js No communication logic is available in Dash.js due to the fact
that MPEG-DASH only requires fetching (i.e., HTTP GET
requests) from the origin server. The DaneCommunicator class
provides an interface to send SAND messages (i.e., HTTP POST
requests, see Section 3.3.1) to a DANE. If the DANE in question
also returns the MPEG-DASH-SAND header, the corresponding

DaneModel shall be notified through the

SAND MESSAGE AVAILABLE event.

SandRequestModifier.js The HTTPLoader subsystem from the streaming system
provides methods for fetching different types of content (i.e., text
based or byte based). It also provides an extension mechanism
called the RequestModifier which is accessible as a plugin for

modifying request headers and requests URLs (e.g., a Dash.js
utilizer who wishes to make Dash.js compatible with their own
system which requires a specific header). Instead of hooking into
the plugin mechanism, we directly supply the HTTPLoader with
our own request modifier which inserts the required
Sand-Client-ID header as explained in Section 4.2.1. This

class is used by DaneModel objects when processing awaiting
messages.

SandMessageParser.js A simplified parsing engine based on the parsers used by the
streaming system. Incoming XML SAND messages are converted
into JSON.

Dane.js A VO that keeps track of DANE specific data such as its role
(in-band-dane, support dane, . . .), the supported capabilities the
DANE reported during the handshake and whether or not we
have encountered issues in the past contacting the DANE such
that we can drop the DANE in the event it goes offline.

CHAPTER 4. POC OUT OF BAND SMART RESOURCE ALLOCATION ENTITY 38

Sand.js The glue component between Dash.js systems and the POC’s
sand system. The Sand class is directly inserted into the

dashjs global variable, similar to how the core, DASH, MSS

and streaming systems work. It provides the
addOutOfBandDane(url, role) functionality to the

MediaPlayer instance created when initiating Dash.js on a
<video> element; Dash.js utilizers can signal their known

support DANEs this way, e.g.,
player.addOutOfBandDane("http://dane.com/", "supportDaneRole"); .

SandController.js The SandController class provides functionality to process
incoming SAND messages. It does this by hooking into the
SAND MESSAGE LOADED event, triggered by a DaneModel object.

It will in turn process the message and relay the processed
SAND messages to their corresponding handler. Currently the
SharedResourceAssignment SAND message will trigger a
SAND BANDWIDTH CAP ISSUED event with the corresponding

bandwidth budget provided by the resource allocation entity. It
will also trigger the SAND CACHED SEGMENTS event for when the
DANE notifies the DASH client about cached segements.

SandErrors.js Extension to the Dash.js error subsystem; provides error types
and error messages which makes traceback easier.

SandEvents.js Extension to the event bus subsystem; it contains all events that
are triggered by the sand system for internal use.

Table 4.5: Overview of all sand system files used during our POC implementation in the Dash.js software
architecture.

Hooks

With the acquired knowledge about the execution flow (see Section 4.3.2), we were able to pinpoint the
areas of interest in the Dash.js subsystems in order for the above functionality to work in context of our
POC.

For bandwidth guidance, we require to notify the DANE about our operation points at which we wish to
operate (see example provided with the SharedResourceAllocation SAND message description in Table
3.3). The TIME SYNCHRONIZATION COMPLETED event signals that a fully fetched and parsed manifest is

available for internal use, and that its information can be queried through the DashAdapter subsystem

(see Section 4.3.1). We hook into this event to gather the required operation points. Listing 4.4 provides
the pseudocode for the way the operation points are calculated in this POC; we combine all video bitrates
together with the highest quality audio bitrate. After the calculations are finished, a SharedResourceAl-
location SAND message is constructed which is sent to the support DANE using the DaneCommunicator

object.

1 function onManifestAcquired() {
2 videoRepresentations = dashAdapter.getRepresentationsForType("video");
3 audioRepresentations = dashAdapter.getRepresentationsForType("audio");
4

5 maxAudioBitrate = −1;
6 for (every audio representation in audioRepresentations)
7 maxAudioBitRate = max(maxAudioBitrate, audio.bitrate);
8

9 operationPoints = [];
10 for (every video in videoRepresentations)
11 operationPoints.push(video.bitrate + maxAudioBitrate);
12

13 return operationPoints;
14 }

Listing 4.4: Pseudocode explaining how operation points are calculated (actual calls to Dash.js subsystems
are simplified).

CHAPTER 4. POC OUT OF BAND SMART RESOURCE ALLOCATION ENTITY 39

Once the DANE notifies the DASH client of its bandwidth budget, the SandController will issue

the internal SAND BANDWIDTH CAP ISSUED event (as explained in Table 4.5). In order to apply the

provided budget, we created a new secondary ABR rule called the SandRule which will listen for the

SAND BANDWIDTH CAP ISSUED event. When SandRule catches this event, it becomes active in the
scheduling logic (see Section 4.3.1) and does two things:

• It advises the ABR logic not to go higher than the highest quality level possible under the provided
bandwidth budget; this stops the DASH player from fetching content at bitrates that exceed its
advised budget.

• It paces the segment fetching in a way that keeps the total throughput per second within the
allocated bandwidth budget.

The total time to pace is calculated based on the selected bitrate, the provided bandwidth budget and
the duration of the segments:

pace time =
duration

bandwidth budget
selected bitrate

∗ 0.9

We subtract a 10% margin from this calculation to compensate for JavaScript timer inaccuracies. A
JavaScript timeout is designed to fire after a given delay and as soon as the main thread is free to handle
its execution; in practise this results in timers sometimes being off by up to a second. The next segment
can be fetched as early as:

next fetch time = current request time + pace time

In order to support smart caching, we expand the SharedResourceAllocation message being sent for
bandwidth guidance with the mpdUrl attribute which contains the manifest URL from the origin server.

From that point on, the DANE can decide to start caching the DASH content being consumed. In order
to know if segments being requested by the streaming system are available at the support DANE, we
first notify it of our anticipated segments via the AnticipatedRequests SAND message. The data required
for this message is gathered in the DashAdapter subsystem which next to providing information to the

streaming system (see Section 4.3.1) also keeps track of the segment index the playback is currently on.
We thus expand the DashAdapter subsystem to also calculate the anticipated segments information

for the upcoming 20 segments. This is done during scheduling when the streaming system queries the
DashAdapter for a VO containing information for the next segment. We hook into this process to check

if the next segment exceeds the anticipated message treshold, which is defined as follows:

anticipated request threshold = last anticipated request index− total anticipated segments

2
)

If next request segment index > anticipated request threshold, the DashAdapter will gather the antic-

ipated request URLs and send them along with the NEW ANTICIPATED MESSAGES event and subsequently

set a last anticipated request index which is total anticipated segments
2 higher than the previous one. The

event is then handled by the Sand object which will send the data towards all support DANEs through

the use of the DaneCommunicator . In case the DANE has cached segments available (see Section 4.2.4),
it will notify the DASH client via the ResourceStatus or DaneResourceStatus SAND message. When this
message arrives, it triggers the internal SAND CACHED SEGMENTS event which passes along the cached

segments reported by the DANE. The CacheModel object will process this event and keep track of all

cached segments available at the DANE. We also expand the scheduling logic to use the CacheModel

during the two steps of scheduling. When the ABR logic is being processed, a query is sent to the
DashAdapter to check if the upcoming segment request is cached (DashAdapter does this by querying

our CacheModel). If this is the case, no bandwidth budget will be applied and the ABR logic will suggest
to upgrade to the highest available quality. When the next step of scheduling requests the next segment
VO from the DashAdapter , it will have replaced the origin server base URL with that of the DANE,

thus resulting in the request being made to the DANE instead of to the origin server. It is important
that the ABR logic advises the highest available quality, without it, the cache request would not work
transparently towards the rest of the system. This could cause playback problems such as decoding errors
when the wrong initialization segment is loaded (which is done whenever a quality level switch happens).

CHAPTER 4. POC OUT OF BAND SMART RESOURCE ALLOCATION ENTITY 40

4.4 Python DANE implementation

For our POC DANE, we utilized the most recent version of Python (as explained in Section 4.1.2) which
during the course of this thesis evolved from Python 3.5.6 to Python 3.7.3. The architecture we used
for our design is described in Section 4.4.1 followed by the POC resource allocation and smart caching
implementations explained in Sections 4.4.2 and 4.4.3.

4.4.1 Architecture

The design of the DANE was inspired by the inner workings of Dash.js and Flask25. The DANE itself -
just like Flask - provides minimal bookkeeping and communication such that it can be flexibly imported
in a Pythonic way to act as a library, we will call this the core DANE from now on. The actual
functionality itself comes from the applications using the DANE library to implement behaviour. This
results in a quick and easy way to deploy a DANE with custom behaviour which can easily scale to
more complex scenarios. The way it allows to implement behaviour, is through an event based system,
inspired by Dash.js. Listing 4.5 provides a small example of a DANE which prints out the capabilities of
connecting DASH clients.

1 from dane import Dane
2 from dane.internals .eventBus import Events
3

4 supported sand message ids = [12, 21]
5 dane name = ”example dane”
6 app = Dane(supported sand message ids, dane name)
7

8 @app.event bus. register for (Events.SAND MESSAGE RECEIVED STATUS CLIENTCAPABILITIES)
9 def onClientCapabilities(event name, client , message):

10 print(f ‘‘ Client with the name ‘{client . client id }’ announced it has support for the following SAND messages: {
message.supportedMessage}’’)

11 # Example: Client with the name ‘client a’ announced it has support for the following SAND messages: [6, 7, 12, 13,
14, 15, 21]

12

13 app.run()

Listing 4.5: Example DANE code showcasing the easy and quick setup procedure.

For the implementation of the core DANE, the following libraries and/or external projects were used:

• Flask micro-webframework for our HTTP entrypoints

• Lxml26 XML toolkit for XML creation and parsing

• SAND header parser27 from the DASH-IF conformance test vectors

The core DANE consists of four big internal systems (depicted in Figure 4.6):

• A webserver entrypoint enabled by Flask that allows POST and GET requests for communication
with a DASH client (and possible future other DANEs)

• A SAND parsing and validation system

• An event bus that allows for behaviour implementation

• A basic bookkeeping system that keeps track of DASH client session data such as:

– Session identification (i.e., the client ID set in the Sand-Client-ID header, see Section 4.2.2)

– Client capabilities

– Last connection time (updated each time the client polls)

– Awaiting messages (retrieved by a client when polling the DANE)

25https://palletsprojects.com/p/flask/
26https://lxml.de/
27https://github.com/Dash-Industry-Forum/SAND-Test-Vectors

CHAPTER 4. POC OUT OF BAND SMART RESOURCE ALLOCATION ENTITY 41

dane/

communication/ sessions/

session

sessionController

internals/ eventBus

sand/

messageSets/

messageSet

Sand2016

parser/

datatypes/ byterange

sandmessage

validation/

schemas/

DASH-MPD.xsd

SAND-MPD.sch

SAND-MPD.xsd

sand messages.xsd

sand messages.sch

headerValidator

xmlValidator

sandController

webserver/ flaskInstance

loggingSetup

dane

Figure 4.6: Core DANE architecture

The core DANE has two typical execution paths depending on which entrypoint the DASH client uses:

• HTTP POST for sending status messages to the DANE

• HTTP GET for fetching PER messages from the DANE (which can optionally include a SAND
status message in the HTTP headers)

When DASH clients make a POST request to the DANE entrypoint (i.e., send a SAND status message),
flaskInstance catches this and performs a precheck on the Sand-Client-Id header. If this header

is not set, the execution pathway stops and the DASH client receives a HTTP 400 response indicating a
malformed request. If it is set, an internal event by the name SAND CLIENT CONNECTED is triggered with

the header value as payload. This event is then caught by the sessionController which compares it
to its known clients: if the client already exists, its last connection time is updated; else a new session is
created which also triggers the SAND CLIENT ADDED event with the newly generated session object as
payload. When the precheck finishes, the Flask instance retrieves the request body and passes this along
to the sandController instance which will try to validate and parse its contents. Our POC implements
both the SAND HTTP and header channels (see Section 3.3.1), as such two data formats are possible.
To simplify development, we created an abstraction layer called sandmessage which can handle both

types of data formats and presents a unified API to the rest of system such that development should not
worry about data formats. Every SAND message type defined in the SAND specification has its own

CHAPTER 4. POC OUT OF BAND SMART RESOURCE ALLOCATION ENTITY 42

class which is derived from sandmessage . When the sandController finishes validation and parsing,

each parsed SAND message will be accessible through its own respective sandmessage object. Once a

list of sandmessage objects is gathered, the sandController will loop through them and trigger an

event related to the SAND message type. The trigger contains the client session and sandmessage

objects as payload. The following list enumerates all possible events based on the default SAND message
set defined in the SAND specification:

• Metric Messages

– SAND MESSAGE RECEIVED METRIC TCPLIST

– SAND MESSAGE RECEIVED METRIC HTTPLIST

– SAND MESSAGE RECEIVED METRIC REPSWICHLIST

– SAND MESSAGE RECEIVED METRIC BUFFERLEVELIST

– SAND MESSAGE RECEIVED METRIC PLAYLIST

• Status Messages

– SAND MESSAGE RECEIVED STATUS ANTICIPATEDREQUESTS

– SAND MESSAGE RECEIVED STATUS SHAREDRESOURCEALLOCATION

– SAND MESSAGE RECEIVED STATUS ACCEPTEDALTERNATIVES

– SAND MESSAGE RECEIVED STATUS ABSOLUTEDEADLINE

– SAND MESSAGE RECEIVED STATUS MAXRTT

– SAND MESSAGE RECEIVED STATUS NEXTALTERNATIVES

– SAND MESSAGE RECEIVED STATUS CLIENTCAPABILITIES

• PER Messages

– SAND MESSAGE RECEIVED PER RESOURCESTATUS

– SAND MESSAGE RECEIVED PER DANERESOURCESTATUS

– SAND MESSAGE RECEIVED PER SHAREDRESOURCEASSIGNMENT

– SAND MESSAGE RECEIVED PER MPDVALIDITYENDTIME

– SAND MESSAGE RECEIVED PER THROUGHPUT

– SAND MESSAGE RECEIVED PER AVAILABILITYTIMEOFFSET

– SAND MESSAGE RECEIVED PER QOSINFORMATION

– SAND MESSAGE RECEIVED PER DELIVEREDALTERNATIVE

– SAND MESSAGE RECEIVED PER DANECAPABILITIES

Implementations using the core DANE can hook into these events and define their own behaviour around
it. If such implementations wish to send SAND messages to the DASH client, they have the opportunity to
do so via the session object passed along with the event. The session.send message(sand message object)

allows for communicating back to the client. Once all hooks finish processing the events triggered by
the SandController , the FlaskInstance will check if the detected DASH client session has awaiting

messages. If this is the case, it will set the MPEG-DASH-SAND header with as value the URL (i.e., DANE
root URL) from where the client can fetch the pending PER messages (i.e., by issuing a HTTP GET). If
everything went alright, the DASH client shall receive an HTTP 200 response.

The second path of communication is via the HTTP GET entrypoint defined in flaskInstance . Simi-

larly to the HTTP POST entrypoint, the GET entrypoint also checks for the Sand-Client-Id header
presence. Because DASH clients can also send SAND messages via HTTP headers, this entrypoint will
perform a presence check for such messages which will be subsequently passed to the sandController

to be processed in the same way as explained for the HTTP POST entrypoint. If after all previous
processing the DASH client has awaiting messages, the flaskInstance will retrieve these as XML for-
matted messages and pass them along with an HTTP 200 response. In the event that no messages are
waiting for the DASH client, the flaskInstance will answer with a HTTP 204 response indicating that

CHAPTER 4. POC OUT OF BAND SMART RESOURCE ALLOCATION ENTITY 43

no new content is available.

It is worth noting that the sessionController also performs a prune of inactive clients which have not
connected with the DANE - either via the HTTP POST or HTTP GET entrypoints - within the last 30
seconds. If a prune happens, a SAND CLIENT REMOVED will be triggered with the respective DASH client

session object. Implementations can use the SAND CLIENT ADDED and SAND CLIENT REMOVED events
to keep track of added and removed clients such that they can update their own bookkeeping.

4.4.2 Resource allocation entity

The resource allocation entity is implemented in the BandwidthController class which hooks into the

following core DANE events: SAND CLIENT ADDED , SAND CLIENT REMOVED and

SAND MESSAGE RECEIVED STATUS SHAREDRESOURCEALLOCATION (see Section 4.2.3). Upon receiving the

SharedResourceAllocation SAND message from a client, the BandwidthController will store the opera-
tion points included in the message and run the basic resource allocation strategy provided by the SAND
specification (see Section 3.2.3). All clients will then be notified of a new bandwidth budget through a
SharedResourceAssignment SAND message. It is important to note that our implementation subtracts
a 10% margin from the total available bandwidth to compensate for packet header overhead (e.g., on a
10Mbit shared connection, the DANE would divide 9Mbit among its MPEG-DASH clients).

4.4.3 Smart caching entity

The smart caching entity is implemented in the Cache class which contains multiple subsystems:

• A cache queue algorithm named CacheQueue

• A caching algorithm named MpdCache

• A throughput calculation system named Throughput

The Cache itself hooks into the following core DANE events: SAND CLIENT ADDED , SAND CLIENT REMOVED ,

SAND MESSAGE RECEIVED STATUS SHAREDRESOURCEALLOCATION

and SAND MESSAGE RECEIVED STATUS ANTICIPATEDREQUESTS (see Section 4.2.4).

Once at least two clients on the shared network connection are detected to be consuming the same
DASH content (signalled via the mpdUrl attribute in the SharedResourceAllocation SAND message), a
new MpdCache instance will be spawned for the MPD content in question. This system will start by

fetching the manifest file and performing a minimalist parse to retrieve information about the highest
quality video segments available (at this point in time, this POC only caches video segments). After
gathering the necessary information about the segments, the MpdCache will try to allocate a budget

for itself from the BandwidthController (see Section 4.4.2) such that fair guidance is still guaranteed

to all clients. Once a budget is available for the MpdCache , it will start by creating a CacheQueue

object that generates a dynamic priority queue filled with all the segments to be cached. One or mul-
tiple cache worker instances can then query this queue for the next segment which they will then fetch.
The Throughput system is used to calculate the average throughput such that the cache workers pace

themselves and do not exceed their allocated bandwidth budget (similar to to the pacing implemented
in the Dash.js fetching logic, see Section 4.3.3).

The CacheQueue has the ability to work in two modi: naive or furthest playback prioritized.
The naive approach will ignore DASH clients’ position within the playback timeline and will always
generate a queue in which segments are fetched in a backwards order. The reasoning behind this is that
all clients progress their timeline from start to finish; if we cache from finish to start, all clients will reach
a point during playback in which the DANE will be able to provide them cached segments at the highest
quality for the rest of their playback duration. This mode also ensures that no cache misses occur from
when a client switches to the DANE cache untill the end of playback. The furthest playback priori-
tized strategy utilizes the expected positions of DASH clients by looking at their anticipated requests.
This strategy will find the client which has progressed the most on its playback timeline and prioritize
the caching of all segments that follow from its highest anticipated segment index. The reason behind

CHAPTER 4. POC OUT OF BAND SMART RESOURCE ALLOCATION ENTITY 44

this is to lower the bandwidth used in the shared connection by letting the DANE prefetch content which
the client with the most playback progress will then fetch from the DANE instead of from the origin
server. Since we are serving the client with the most progress, clients with an ealier position in the
playback timeline, will naturally also reach a playback point for which cached segments are available.
Figure 4.7 depicts the two strategies side by side and how they prioritize their queue based on incoming
AnticipatedRequests SAND messages; the timeline is represented in the segment domain instead of the
more conventional temporal domain. It is important to note that this depicted example does not remove
segment IDs that are already cached for the sake of clearity; in our POC, cached segments disappear
from the cache queue once they are fetched and available locally.

Figure 4.7: Visualisation of the naive versus furthest playback prioritized strategies implemented in the
CacheQueue class. It depicts a timeline represented in the segment domain as clients send Anticipate-

dRequests SAND messages to the DANE which trigger the cache queue strategies to re-prioritize their
cache sequences.

Chapter 5

POC Evaluation

This chapters describes the evaluation of this thesis’ implementation. We evaluate our implementation
through an experimental setup described in Section 5.1. Sections 5.2 and 5.3 describe the experiments
themselves and their results, respectively.

5.1 Testbed

We evaluate our implementation in a locally wired network setup, as depicted in Figure 5.1. Our setup
consists of a client host (which hosts four clients for each experiment), DANE and origin server all
connected via a 1Gbit switch. Table 5.1 describes the technical specifications of all devices involved. In
order to simulate a realistic setup, the egress traffic of the origin server is limited to 10Mbit per second
with the help of a Token Bucket Filter (TBF) [40] queuing discipline for the Linux traffic control tc [41]
command: tc qdisc add dev enp0s25 root tbf rate 10mbit burst 1.5kb latency 250ms . We

confirmed this command achieves the imposed 10Mbit limit by performing multiple throughput tests
using the Iperf1 toolkit; we used multiple intervals ranging from 0.5 to 10 seconds (-i flag) as well as
multiple parallel connections (-P flag) ranging from 1 to 4. The Iperf tests proved a stable connection
that averages around 9.7Mbit per second. The clients themselves are spawned via a small Python script
that utilizes the built-in webbrowser module, see Listing 5.1. Our testbed did not have to worry about
time synchronization since all clients were spawned on the same host machine.

Figure 5.1: Network topolgy diagram of our testbed.

1https://iperf.fr/

45

CHAPTER 5. POC EVALUATION 46

Entity Device

Client host Dell XPS 13 9370 - Intel Core i7-8550U (4cores, 8 threads) @ 4.00GHz, 16GB
RAM - Arch Linux - Linux kernel 5.2.0 - 4 parallel clients on Firefox 68.0 using
our Dash.js implementation (see Section 4.3)

DANE Custom PC - Intel Core i5-3570K (4 cores, overclocked) @ 4.20GHz, 8GB RAM -
Dane implementation (see Section 4.4)

Origin Server HP Probook 650 G1 laptop - Intel Core i5-4210M (2 cores, 4 threads) @ 2.60GHz,
4GB RAM - Ubuntu Server 18.04.3 LTS - Linux kernel 4.15.0 - NGINX2 1.14.0

Switch TP-Link TL-SG1005D V5 (unmanaged)

Table 5.1: Overview of testbed device hardware.

1 import webbrowser
2 import time
3

4 interval experiment = True
5 evaluation script index = 3
6

7 interval values = []
8 if interval experiment:
9 interval values = [0, 15, 15, 15] # Clients start with a wait, specified as the list value, after the previous

10 else :
11 interval values = [0, 0, 0, 0] # All clients start at the same time
12

13 for i in interval values :
14 time.sleep(i)
15 webbrowser.open(”http://127.0.0.1/evaluation t{}.html”.format(str(evaluation script index))) # Opens a new tab

in the OS default browser

Listing 5.1: Python client spawn script

5.2 Experiments

In order to verify our implementation described in Chapter 4, and subsequently tackle our research
questions posed in Section 1.1, we will make use of three experimental setups. Every (sub-)experiment is
run three times and uses the manifest file provided in Listing 5.2. The video utilized by our experiments
comes from the Big Buck Bunny3 project. The manifest provides a total of 20 representations with bitrates
ranging from 45kb per second to 3.9Mbit per second, with a segment size of 4 seconds. Experiments
involving SAND will respect the minimum buffer time of 10 seconds as specified by the manifest (see
minBufferTime attribute on the MPD XML tag). The total playback time of the manifest is three
minutes (see mediaPresentationDuration attribute on the MPD XML tag).

1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <!−− MPD file Generated with GPAC version 0.5.1−DEV−rev5379 on 2014−09−10T13:30:18Z−−>
3 <MPD xmlns=”urn:mpeg:dash:schema:mpd:2011” minBufferTime=”PT10S” type=”static” mediaPresentationDuration=

”PT0H3M0S” profiles=”urn:mpeg:dash:profile:isoff−live:2011”>
4 <ProgramInformation moreInformationURL=”http://gpac.sourceforge.net”>
5 <Title>dashed/BigBuckBunny 4s simple 2014 05 09.mpd generated by GPAC</Title>
6 </ProgramInformation>
7 <Period duration=”PT0H3M0S”>
8 <AdaptationSet segmentAlignment=”true” group=”1” maxWidth=”480” maxHeight=”360” maxFrameRate=”24”

par=”4:3”>
9 <SegmentTemplate timescale=”96” media=”bunny $Bandwidth$bps/BigBuckBunny 4s$Number$.m4s”

startNumber=”1” duration=”384” initialization=”bunny $Bandwidth$bps/BigBuckBunny 4s init.mp4” />
10 <Representation id=”320x240 45.0kbps” mimeType=”video/mp4” codecs=”avc1.42c00d” width=”320” height=”

240” frameRate=”24” sar=”1:1” startWithSAP=”1” bandwidth=”45226” />
11 <Representation id=”320x240 89.0kbps” mimeType=”video/mp4” codecs=”avc1.42c00d” width=”320” height=”

240” frameRate=”24” sar=”1:1” startWithSAP=”1” bandwidth=”88783” />
12 <Representation id=”320x240 129.0kbps” mimeType=”video/mp4” codecs=”avc1.42c00d” width=”320” height=”

240” frameRate=”24” sar=”1:1” startWithSAP=”1” bandwidth=”128503” />
13 <Representation id=”480x360 177.0kbps” mimeType=”video/mp4” codecs=”avc1.42c015” width=”480” height=”

360” frameRate=”24” sar=”1:1” startWithSAP=”1” bandwidth=”177437” />

3https://peach.blender.org/

CHAPTER 5. POC EVALUATION 47

14 <Representation id=”480x360 218.0kbps” mimeType=”video/mp4” codecs=”avc1.42c015” width=”480” height=”
360” frameRate=”24” sar=”1:1” startWithSAP=”1” bandwidth=”217761” />

15 <Representation id=”480x360 256.0kbps” mimeType=”video/mp4” codecs=”avc1.42c015” width=”480” height=”
360” frameRate=”24” sar=”1:1” startWithSAP=”1” bandwidth=”255865” />

16 <Representation id=”480x360 323.0kbps” mimeType=”video/mp4” codecs=”avc1.42c015” width=”480” height=”
360” frameRate=”24” sar=”1:1” startWithSAP=”1” bandwidth=”323047” />

17 <Representation id=”480x360 378.0kbps” mimeType=”video/mp4” codecs=”avc1.42c015” width=”480” height=”
360” frameRate=”24” sar=”1:1” startWithSAP=”1” bandwidth=”378355” />

18 <Representation id=”854x480 509.0kbps” mimeType=”video/mp4” codecs=”avc1.42c01e” width=”854” height=”
480” frameRate=”24” sar=”1:1” startWithSAP=”1” bandwidth=”509091” />

19 <Representation id=”854x480 578.0kbps” mimeType=”video/mp4” codecs=”avc1.42c01e” width=”854” height=”
480” frameRate=”24” sar=”1:1” startWithSAP=”1” bandwidth=”577751” />

20 <Representation id=”1280x720 783.0kbps” mimeType=”video/mp4” codecs=”avc1.42c01f” width=”1280” height=
”720” frameRate=”24” sar=”1:1” startWithSAP=”1” bandwidth=”782553” />

21 <Representation id=”1280x720 1.0Mbps” mimeType=”video/mp4” codecs=”avc1.42c01f” width=”1280” height=”
720” frameRate=”24” sar=”1:1” startWithSAP=”1” bandwidth=”1008699” />

22 <Representation id=”1280x720 1.2Mbps” mimeType=”video/mp4” codecs=”avc1.42c01f” width=”1280” height=”
720” frameRate=”24” sar=”1:1” startWithSAP=”1” bandwidth=”1207152” />

23 <Representation id=”1280x720 1.5Mbps” mimeType=”video/mp4” codecs=”avc1.42c01f” width=”1280” height=”
720” frameRate=”24” sar=”1:1” startWithSAP=”1” bandwidth=”1473801” />

24 <Representation id=”1920x1080 2.1Mbps” mimeType=”video/mp4” codecs=”avc1.42c032” width=”1920” height=
”1080” frameRate=”24” sar=”1:1” startWithSAP=”1” bandwidth=”2087347” />

25 <Representation id=”1920x1080 2.4Mbps” mimeType=”video/mp4” codecs=”avc1.42c032” width=”1920” height=
”1080” frameRate=”24” sar=”1:1” startWithSAP=”1” bandwidth=”2409742” />

26 <Representation id=”1920x1080 2.9Mbps” mimeType=”video/mp4” codecs=”avc1.42c032” width=”1920” height=
”1080” frameRate=”24” sar=”1:1” startWithSAP=”1” bandwidth=”2944291” />

27 <Representation id=”1920x1080 3.3Mbps” mimeType=”video/mp4” codecs=”avc1.42c032” width=”1920” height=
”1080” frameRate=”24” sar=”1:1” startWithSAP=”1” bandwidth=”3340509” />

28 <Representation id=”1920x1080 3.6Mbps” mimeType=”video/mp4” codecs=”avc1.42c032” width=”1920” height=
”1080” frameRate=”24” sar=”1:1” startWithSAP=”1” bandwidth=”3613836” />

29 <Representation id=”1920x1080 3.9Mbps” mimeType=”video/mp4” codecs=”avc1.42c032” width=”1920” height=
”1080” frameRate=”24” sar=”1:1” startWithSAP=”1” bandwidth=”3936261” />

30 </AdaptationSet>
31 </Period>
32 </MPD>

Listing 5.2: Experiment manifest.

Experiment 1: No DANE involvement. For comparison to our own implementation, we will start
four parallel clients at the same time over a 10Mbit per second shared network connection. This experi-
ment will utilize vanilla Dash.js version 3.0 with all settings set to default and will serve as our baseline.
This experiment will track the following metrics: buffer occupancy, selected bitrates, throughput, the
amount of quality switches and stalls during playback for each of the four clients.

Experiment 2: Fair bandwidth guidance. This experiment will also start four clients at the same
time over a 10Mbit per second shared network connection. The difference with experiment one, is that
this setup incorporates our resource allocation entity described in Section 4.4.2. All clients will
communicate with the DANE via SAND messages, thus allowing the DANE to steer all clients towards
a fair bandwidth usage. This experiment will track the same metrics as experiment one..

Experiment 3: Smart caching. Experiment 3 will test our smart caching entity described in
Section 4.4.3. The setup is similar to the one in experiment 2, with the exception of the DANE also pre-
fetching content for all clients. We will perform tests for our two caching implementations; each caching
implementation will in turn be tested with a different client startup rate: one where all four clients are
started in parallel and one where clients start at 15 second intervals. This experiment will track the same
metrics as experiment one plus cache hits4 during playback.

5.3 Results

Following sections describe the results we obtained from the experiments described in Section 5.2. We
ran each (sub-)experiment three times and we did not notice any deviating, worse or better behaviour in
the results obtained from each run. As such, following sections will present the results of a singular run.

4We define a cache hit as a segment that the client is able to fetch from the DANE.

CHAPTER 5. POC EVALUATION 48

5.3.1 No DANE Involvement

Figures 5.2, 5.3, 5.4 and 5.5 depict the buffer occupancy, selected bitrates, individual throughputs and
stacked throughputs respectively of all four clients involved in the experiment. As we hypothesized in
Chapter 1, the limited throughput over the shared last mile - simulated by the 10Mbit per second egress
traffic shaper on the origin server - causes competing behaviour between our four clients. By looking
at the stacked area chart in Figure 5.5, we can see that the total throughput never exceeds the 10Mbit
per second threshold. By looking at the buffer occupancy and selected bitrates, we can see client four
thriving at the expense of clients one through three, mainly from the 100 second mark. The throughput
graph shows inequality between all four clients which indicates an unfair bandwidth share. As a result,
Dash.js’ ABR logic - which is mainly throughput driven in non-stable buffer scenarios - will advice to
switch to lower quality representations to compensate for this behaviour (this can be noticed by looking
at the 120 second mark in Figure 5.3). In turn, this leads to client four receiving more breathing room
and the capability to keep fetching its own content at the highest available quality. The behaviour we
notice yields an overall bad QoE for the users, which we can confirm by the amount of quality switches
and stalls experienced, represented in Table 5.2.

Client 1 Client 2 Client 3 Client 4

Detected quality switches 32 37 32 12
Detected stalls 2 1 1 2

Table 5.2: No DANE involvement: Overview of the total number of stalls and quality switches experienced
by all four clients.

Figure 5.2: No DANE involvement: The buffer occupancy expressed in seconds for each client during
playback.

CHAPTER 5. POC EVALUATION 49

Figure 5.3: No DANE involvement: The selected bitrates expressed in kilobit per second for each client
during playback.

Figure 5.4: No DANE involvement: The throughput expressed in megabit per second for each client
during playback, presented as a line chart.

CHAPTER 5. POC EVALUATION 50

Figure 5.5: No DANE involvement: The throughput expressed in megabit per second for each client
during playback, presented as a stacked area chart.

5.3.2 Fair Bandwidth Guidance

Figures 5.6, 5.7, 5.8 and 5.9 depict the buffer occupancy, selected bitrates, individual throughputs and
stacked throughputs respectively of all four clients involved in the experiment. One can see that the
resource allocation role assumed by our DANE introduces fairness in terms of bandwidth usage by
looking at the bitrates selected by our clients (i.e., Figure ??) and the stacked throughput graph. Clients
never chose a bitrate higher than their given bandwidth budget (as communicated by the DANE), which
together with the implemented pacing mechanism in the Dash.js segment scheduler results in a more
evenly divided throughput as can be seen in the (stacked) throughput graph. This can also be seen
by comparing the throughput graph of this experiment with the one of experiment 1, experiment 2
clearly shows all clients roughly staying around the 2-2.5Mb per second mark, whilst in experiment 1
this chaotically varied depending on the client. The results also show a drastic drop in the amount of
quality switches and no detected stalls (see Table 5.3); this behaviour yields a better QoE for the user.
The reason we see one quality switch for all clients stems from the buffer-fill phase during which Dash.js
will fill its buffer in a lower quality until it reaches the steady buffer state, after which it will continue
filling the buffer at highest possible quality (which is equal to the DANE’s directive in this scenario).
We can notice this behaviour in the buffer occupancy graph which starts showing a drop only after the
steady buffer state is reached.

Client 1 Client 2 Client 3 Client 4

Detected quality switches 1 1 1 1
Detected stalls 0 0 0 0

Table 5.3: Fair bandwidth guidance: Overview of the total number of stalls and quality switches experi-
enced by all four clients.

CHAPTER 5. POC EVALUATION 51

Figure 5.6: Fair bandwidth guidance: The buffer occupancy expressed in seconds for each client during
playback.

Figure 5.7: Fair bandwidth guidance: The selected bitrates expressed in kilobit per second for each client
during playback. Even though clients one and two are not visible, in reality they follow the same bitrate
selection trajectory as clients three and four.

CHAPTER 5. POC EVALUATION 52

Figure 5.8: Fair bandwidth guidance: The throughput expressed in megabit per second for each client
during playback, presented as a line chart.

Figure 5.9: Fair bandwidth guidance: The throughput expressed in megabit per second for each client
during playback, presented as a stacked area chart.

5.3.3 Smart Caching

For this experiment, we will only show the graphs for the naive queue implementation. The graphs for
the furthest player prioritized queue implementation show similar findings in terms of buffer occu-
pancy, selected bitrates and throughput. Figures 5.10, 5.11, 5.12 and 5.13 depict the buffer occupancy,
selected bitrates, individual throughputs and stacked throughputs respectively of all four clients started
in parallel. Figures 5.14, 5.15, 5.16 and 5.17 depict the same respective information but for the case
where all clients are started at a 15 second interval. All graphs of both cases show high spiking behaviour
from the moment a client is able to switch to cached segments (i.e., at the 85 and 100 second marks,
respectively), this is because the client does not require pacing anymore and it can fetch the highest qual-

CHAPTER 5. POC EVALUATION 53

ity segments from the DANE over intranet speeds (i.e., 1Gb per second). The most interesting metric
gathered during this experiment is the cache hit count for each individual client. Table 5.4 provides an
overview of the amount of quality changes, stalls and cache hits each client encountered. As explained in
Section 5.1, this experiment utilizes four second segments for a three minute long period. This results in
46 segments being fetched, which is one more than anticipated; the segmentation process (see Section
2.4.1) during adaptive content preparation can sometimes introduce small deviations such as segments
which are a couple of milliseconds shorter or longer than the intended duration.

At first sight, the two caching implementations seem similar in their achievements. A longer playback
duration however would result in different results, the reason being that our POC implementation works
with the next twenty anticipated requests (see Section 4.2.4), which in this setup is almost half of the
segments. We also see that client one suffers from drawbacks if more clients join the stream at a later
time. Because the DANE will start aggressively caching the highest quality available at two times the
bitrate for that quality, all other clients are pushed towards a very low quality. Clients joining after
client one do not notice this because they will be guided towards the right bitrate from the start; client
one however has to significantly drop its quality. This process can take a while because client one is
still fetching the highest available quality concurrently with the DANE; the DANE and client, in other
words, compete for bandwidth for a small amount of time until client one finishes fetching the in-flight
(high-quality) segment. We know that by looking at the bitrate selection graph and the throughput
chart that the DANE paces itself correctly; if this were not the case, all clients would start experiencing
a similar behaviour to the clients in experiment 1.

In this experimental setup, the caching algorithms are both able to push clients towards the highest
available quality for over 50% of all segments. Our experiment is thus able to provide the highest quality
of experience towards its clients whilst also reducing the overall traffic over the shared network connec-
tion. Table 5.5 provides an overview of the reductions compared to the total amount of traffic used during
experiment two. With the provided testbed and experiments we are able to achieve reductions ranging
from 29.49% to 42.68%.

Client
1 2 3 4

Naive cache queue

Clients start at the
same time

Detected quality switches 3 2 2 2
Detected stalls 0 0 0 0
Detected cache hits 24

46
24
46

24
46

24
46

Clients start 15
seconds apart from
each other

Detected quality switches 8 4 3 2
Detected stalls 1 0 0 0
Detected cache hits 24

46
24
46

25
46

32
46

Furthest player prioritized cache queue

Clients start at the
same time

Detected quality switches 3 3 2 2
Detected stalls 0 0 0 0
Detected cache hits 24

46
24
46

24
46

24
46

Clients start 15
seconds apart from
each other

Detected quality switches 8 4 3 2
Detected stalls 1 0 0 0
Detected cache hits 24

46
24
46

24
46

31
46

Table 5.4: Smart caching: Overview of the total number of quality switches, stalls and cache hits expe-
rienced by all four clients. This setup was tested with two types of cache queue implementations as well
as two different client arrival rates.

CHAPTER 5. POC EVALUATION 54

Experiment Reduction in
MB %

Naive - Clients start at the same time 72.70 40.98
Naive - Clients start 15 seconds apart from each other 57.23 32.26
Furthest player prioritized - Clients start at the same time 75.73 42.68
Furthest player prioritized - Clients start 15 seconds apart from each other 52.32 29.49

Table 5.5: Smart caching: Overview of the total amounts of reductions in bandwidth consumption
compared to experiment 2, expressed in both megabytes as well as percentage.

Figure 5.10: Smart caching: The buffer occupancy expressed in seconds for each client during playback.
Clients were started at the same time and the DANE utilized the naive cache queue implementation.

CHAPTER 5. POC EVALUATION 55

Figure 5.11: Smart caching: The selected bitrates expressed in kilobit per second for each client dur-
ing playback. Clients were started at the same time and the DANE utilized the naive cache queue
implementation.

Figure 5.12: Smart caching: The throughput expressed in megabit per second for each client during
playback, presented as a line chart. Clients were started at the same time and the DANE utilized the
naive cache queue implementation.

CHAPTER 5. POC EVALUATION 56

Figure 5.13: Smart caching: The throughput expressed in megabit per second for each client during
playback, presented as a stacked area chart. The total throughput never exceeds the 10Mbit per second
threshold when fetching content from the media origin server and is unrestricted when fetching cached
content from the DANE. Clients were started at the same time and the DANE utilized the naive cache
queue implementation.

Figure 5.14: Smart caching: The buffer occupancy expressed in seconds for each client during playback.
Clients were started using a 15 second arrival interval and the DANE utilized the naive cache queue
implementation.

CHAPTER 5. POC EVALUATION 57

Figure 5.15: Smart caching: The selected bitrates expressed in kilobit per second for each client during
playback. Clients were started using a 15 second arrival interval and the DANE utilized the naive cache
queue implementation.

Figure 5.16: Smart caching: The throughput expressed in megabit per second for each client during
playback, presented as a line chart. Clients were started using a 15 second arrival interval and the DANE
utilized the naive cache queue implementation.

CHAPTER 5. POC EVALUATION 58

Figure 5.17: Smart caching: The throughput expressed in megabit per second for each client during
playback, presented as a stacked area chart. The total throughput never exceeds the 10Mbit per second
threshold when fetching content from the media origin server and is unrestricted when fetching cached
content from the DANE. Clients were started using a 15 second arrival interval and the DANE utilized
the naive cache queue implementation.

Chapter 6

Related Works

The following sections describe work related to server and network assistance in video streaming. Most
works encountered in this field are related to software-defined networking (SDN), explained in Section
6.1. While realizing this thesis, works by the DASH-IF [42] and Pham et al. [43] were published which
are closely related to our own work, these are described in Sections 6.2 and 6.3.

6.1 Software-Defined Networking for Improving DASH Streams

The work by Kleinrouweler et al. [44] focuses on performance problems when multiple DASH clients share
the same network connection. Their work builds upon the findings by Huang et al. [4] and Akhshabi
et al. [45] that show when multiple adaptive streaming clients compete for bandwidth, all clients start
noticing a decrease in bitrate due to competing TCP flows. This inevitably leads to quality switches and
stalling, both of these negatively impact the viewers’ QoE.

Kleinrouweler et al. focus on large real network settings with up to 600 concurrent DASH clients. They
introduce a DASH assisting network element (DANE), not to be confused with the DANE of SAND
which got to see daylight at a later date. This DANE consists out of three elements:

1. A physical Network Bridge consisting of two physical network interface cards that are controlled
in software via Linux tc [41] for packet forwarding and traffic control

2. The Network Controller is a piece of software that manages the network bridge traffic control
settings

3. The Service Manager is the entity that talks to the network controller and all DASH clients

In their setup, DASH clients talk to the service manager about the stream they are consuming. The
service manager equally divides the bandwidth among the DASH players and sends them directives
about their fair share. The authors decided to implement the DASH players as headless entities; focus
on the network bottleneck was their main priority, as such it was decided to ignore video decoding and
displaying. Each headless DASH player comes equipped with three adaptation algorithms, of which the
two first are based on the ABR logic from Dash.js (see Section 4.1.1):

1. Throughput-based

2. BOLA

3. Assisted adaptation (i.e., their DANE supported algorithm)

Even though their headless client incorporates some of the Dash.js ABR rules, they do not work in the
same complex way. The first two rules work independently and are selected as the adaptation algorithm
during tests. Their assisted adaptation however works in conjunction with the BOLA rule: if the DASH
player buffer is higher than 10 seconds and the BOLA rule suggests a higher bitrate than the recom-
mended bitrate from the service manager, the BOLA suggestions will be ignored; in cases where the
buffer is lower than 10 seconds, DANE recommendations are also ignored.

Their testbed consisted of 30 Raspberry Pis each hosting a maximum of 20 headless DASH players.
Two experiments were run on the above three adaptation algorithms:

59

CHAPTER 6. RELATED WORKS 60

1. Parallel start-up of multiple clients to simulate a popular stream (i.e. a new release of a popular
series).

2. Poisson process start-up in which DASH players are started using a Poisson process. This makes
the arrival rate of clients vary over time.

The results of their experiments corroborated earlier findings from Huang et al. [4] and Akhshabi et
al. [45] when looking at throughput-based and BOLA-based adaptation algorithms. With their as-
sisted adaptation, they were able to reduce stalling and quality switches when compared to standalone
throughput or BOLA, Table 6.1 describes these reduction rates.

Stalling Quality Switches

Compared to Throughput -95% -94%
Compared to BOLA -75% -85%

Table 6.1: Reduction in stalling and quality switches for assisted adaptation versus througput and BOLA.

The work by Bhat et al. [46] focuses on network assistance in wide-area setups. They introduce a setup
called SABR which stands for SDN assisted Adaptive Bitrate Video streaming. Their setup
consists of three important parts:

1. An OpenFlow Southbound API (i.e., a controller which is used to send network directives to
physical or virtual routers and switches within the network to change their behaviour) which is
used to orchestrate SDN assisted CDNs for adaptive streaming.

2. An OpenFlow Nortbound interface which implements a Representational State Transfer
(REST) API which can be queried by the clients to retrieve CDN information such as available
caches, bottleneck bandwidth to those caches and the available DASH content within these caches.

3. A SDN assisted adaptation algorithm implemented in the open source Astream1 Python based
DASH client by Juluri et al. [47]

The SDN assisted adaptation algorithm is implemented in three classes of adaptation algorithms (similar
to the approach of Dash.js, see Section 4.1.1):

1. Rate-based algorithms: SABR provides more accurate and realtime available bandwidth infor-
mation; these outperform the estimations made on previously measured throughputs of already
downloaded segments

2. Buffer-based algorithms: By letting SABR provide more accurate fetch times for segments and
their corresponding quality, clients can anticipate when to fetch a new segment based on their buffer
occupancy

3. Hybrid algorithms: Combines the strengths of previous two algorithms and their SABR improve-
ments

Their testbed consists of a geographically distributed CloudLab [48] setup (i.e., a collection of software
defined network switches co-hosted with storage and compute power for researchers to perform cloud-
based experiments on) which tests a number of ABR algorithms in combination with caching algorithms
(for a more detailed description, we redirect the reader to [46]). Their setup is built to test the QoE
performance of clients with SABR and the caching performance with SABR in terms of cache hit rates
on CDN nodes. Their findings indicate an improvement in the quantitative metrics of QoE, mainly be-
cause SABR provides accurate network characteristics which directly influence how well ABR algorithms
perform. Their work also shows that the choice of caching algorithm at the CDN side can improve QoE
as well as overall system performance.

Whilst our work focuses on similar topics, it takes a different route in achieving similar results. Our
goal is to guide clients using MPEG-DASH SAND by only sending asynchronous network-to-client rec-
ommendations which are not enforced by network entities (e.g., software-defined networking) and only
by the clients themselves.

1https://github.com/pari685/AStream

CHAPTER 6. RELATED WORKS 61

6.2 MPEG-DASH SAND Interoperability Guidelines

Whilst working on this thesis, DASH-IF released guidelines [42] which tackle our first research question
(see Section 1.1) in an alternative way to our implementation. The DASH-IF guidelines describe several
SAND modi for specific use cases together with a workflow. In our implementation, we opted for HTTP
and header channels as our main way of exchanging SAND messages. The DASH-IF guidelines, however,
indicate that next to the mandatory HTTP and header channel support, WebSocket is also mandatory
and shall we used as the primary transport protocol. By using WebSocket, DASH-IF avoids having to
deal with active versus non-active client identification (see Section 4.2.1) and thus does not require a
polling mechanism. The following paragraphs describe the SAND modi. Clients and DANEs indicate
support for the following modi in their ClientCapabilities and DaneCapabilities SAND message, where
they set the messageSetUri parameter to one or more of the following URNs:

• Consistent QoE/QoS: http://dashif.org/guidelines/sand/modes/qo

• Proxy Caching: http://dashif.org/guidelines/sand/modes/pc

• Network Assistance: http://dashif.org/guidelines/sand/modes/na

Consistent QoE/QoS. This mode, also known as the home gateway use case, is used to provide a
consistent QoE or QoS for DASH clients within a shared network. It resembles our bandwidth guidance
role defined in Section 4.2.3. The following SAND messages are required to be implemented by DANE
and DASH clients:

• ClientCapabilities

• DaneCapabilities

• SharedResourceAssignment

• SharedResourceAllocation

• QoSInformation

Proxy Caching. This mode, also known as CDN edge, is intended for enabling streaming enhance-
ments via proxy caching. Similarities are present with our smart caching role; our implementation,
however, is deployed in the same network as where the DASH clients reside. The following SAND mes-
sages are required to be implemented by DANE and DASH clients:

• ClientCapabilities

• DaneCapabalities

• AnticipatedRequests

• AcceptedAlternative

• DeliveredAlternative

• ResourceStatus

• MPDValidityEndTime

• NextAlternatives

Caches can indicate (partial) representation caching by sending the PER messages ResourceStatus, De-
liveredAlternative and MPDValidityEndTime. To achieve next-segment caching, a client sends the status
messages AnticipatedRequests, AcceptedAlternatives and NextAlternatives. No guidelines are provided on
how to implement next-segment caching.

CHAPTER 6. RELATED WORKS 62

Network Assistance. This mode provides DASH clients with network information for their rate-
based and buffer-based ABR algorithms in wireless scenarios. It provides two functions towards clients:
bandwidth guidance per segment download and temporary delivery boost to avoid buffer under-runs.
The second option is not mandatory for a DASH client to support. The following SAND messages
are required to be implemented by DANE and DASH clients, with the final 6 message types being
custom/non-standardized SAND extensions:

• ClientCapabilities

• DaneCapabilities

• SharedResourceAssignment

• SharedResourceAllocation

• NetworkAssistanceInitiationRequest

• NetworkAssistanceInitiationResponse

• NetworkAssistanceTerminination

• SegmentDuration

• DeliveryBoostRequest

• DeliveryBoostResponse

The DASH-IF guidelines also mention security considerations which match with our security considera-
tions described in Section 3.4.1. It also introduces a new DANE discovery procedure with out-of-band
DANEs using DNS. A DASH client can optionally implement this discovery protocol. The way it works
is by querying the dane subdomain either through the Fully Qualified Domain Name (FQDN) or the

Partially Qualified Domain Name (PQDN). The subdomain named dane is expected to group all DANEs
that the network implements. A query shall result in all IP addresses of the respective DANEs. The spe-
cific modi supported by the network are identified as subdomains of the dane subdomain (i.e., qo.dane ,

pc.dane and na.dane). If a specific mode is queried, the DNS shall respond with only the IP of the

DANE providing that mode. Our implementation does not handle out-of-band DANE discovery.

6.3 MPEG-DASH SAND for Improving DASH Streams

The work by Pham et al. [43], similar to our bandwidth guidance role (see Section 4.2.3), focuses on
introducing fairness when bandwidth is shared by multiple clients. Just like our implementation, their
setup makes use of Dash.js clients (although, the older version 2.5.0) with only the BOLA rule enabled
(i.e., a buffer-based client). The way bandwidth guidance is applied to clients, however, differs much from
our own implementation. Pham et al. utilize a traffic shaper on the client side to limit ingress traffic to
the quality bitrate advised by their DANE. When the DANE advises a maximum quality, their solution
informs Dash.js about the quality level limit and sets the maximum allowed ingress throughput to that
level. Our solution on the other hand, deploys a per Dash.js client pacing algorithm which limits the
bandwidth usage without explicitly throttling the client’s network connection. Their testbed consists of
24 Dash.js clients connecting to the media origin server. With the DANE involved, their results match
with ours in that the QoE is improved significantly as well as fairness is achieved. The advantage of our
implementation is that it can be deployed in any browser without extra sofware required by the user;
Pham et al. explicitly state that their implementation is a makeshift bandwidth limiting solution which
works well for their setup (i.e., to prove their concept).

Chapter 7

Conclusion and Future Work

To conclude this thesis, we will recapitulate our findings and answer the questions we posed at the be-
ginning of this thesis. After examining the current landscape together with future predictions, we are
confident that a need for server and network assistance will rise soon. The Moving Pictures Expert Group
predicted this by starting a Core Experiment in 2012 which led to the creation of SAND in 2017, which
enables a standardized way of performing server and network assistance during MPEG-DASH streaming.
We started this thesis with an interest in optimizing adaptive streaming QoE on shared network connec-
tions by means of server and network assistance.

The first question we asked ourselves, was what aspects are required to transition from the SAND
specification to a deployable SAND implementation. To answer this question, we analyzed the SAND
specification and looked into related works concerning client assistance during adaptive media streaming.
We created a protocol for SAND message exchange between a client and an out-of-band DANE using the
mandatory HTTP and header channels as mentioned in the SAND specification. The protocol supplies
DANEs and clients with a mechanism to achieve out-of-band communication such that clients can share
their operational characteristics and DANEs can provide guidance towards their clients.

The second question we asked ourselves, was if it is possible to guide multiple users on a shared network
connection into a fair bandwidth usage using only SAND such that they do not experience the detrimen-
tal effects caused by bandwidth competition? We created a POC that bestows a resource allocation role
on a DANE. By experimentally evaluating our POC, we were able to confirm that it is in fact possible
to guide concurrent MPEG-DASH clients towards a fair bandwith share without having to restrict their
ingress throughput by means of traffic shaping or software defined networking. The evaluation showed
that the overall QoE (expressed in terms of the total amount of quality switches and playback stalls)
improved when compared to a non-DANE scenario.

The last question we asked ourselves, was if we can support multiple clients consuming the same DASH
stream within the same network in such a way that they enjoy the same or a better overall Quality of
Experience and that the overall bandwidth consumption is lower than when the clients would individually
compete for the same content at the quality provided by SAND? For this, we built upon the resource
allocation role and added a smart caching role. This role enables a DANE to pre-fetch DASH media
content and inform clients of its availability within the shared network. By performing an evaluation
on this setup, we concluded that clients were able to view the content in a higher quality than should
have been possible in a fair share scenario, with the penalty of temporarily having to share the network
connection with an extra consumer, being the DANE itself. The results also show less total bytes spent
over the shared network connection which results lower costs.

We can confidently say that the research questions we posed at the start of this work can all be an-
swered in a positive way. This proves that server and network assistance optimizes our scenario and in all
probability has to potential to do so too in other areas. With adaptive streaming becoming more popular
and putting a significant requirement on shared network connections, we predict a rise in the popularity
of SAND to enable more fair and better user experiences.

63

CHAPTER 7. CONCLUSION AND FUTURE WORK 64

Future Work

The following paragraphs describe future work opportunities that were identified while working on this
thesis.

Heuristic caching approach. The smart caching role implemented into our DANE currently exclu-
sively pre-fetches DASH content at the highest quality available; this was done specifically in context of
this thesis. The goal was to try and see if we could achieve a higher quality for all our clients streaming
the same DASH content whilst saving on actual bandwidth consumption and providing a better QoE. In
a more realistic scenario, however, only considering the highest quality DASH representation for DANE-
side caching purposes would not suffice. We do not take into account what the actual client capabilities
are (this could require a new type of SAND message) or what the actual throughput limit looks like. If,
for example, the highest quality indicated by the manifest file were to be 10Mbps and the throughput
is limited to 10Mbps, our setup would fail. A better approach would be to figure out what quality is
best-fitting for the situation at hand and subsequently pre-fetch that quality for our clients. Another
approach would be to group clients according to their capabilities and give them a certain priority, with
these priorities then being incorporated in the decision process. There exist many ways one could improve
this behaviour whilst keeping the fair use of the shared network more or less intact.

Heat-map cache queue implementation. During our implementation and evaluation, we focused
on two types of cache queue implementations: naive and furthest playback prioritized. The first one will
provide a better QoE but does not take client playback times into consideration whilst the second one
fails in specific scenarios. Imagine a case where five clients are streaming the same DASH content, clients
1 through 4 are around the same playback timestamp at the beginning of the stream, but client 5 is near
the end of the playback timeline. Our furthest playback prioritized cache queue would prioritize client 5,
even though it would make more sense to prioritize clients 1 through 4 as this would result in less overall
bandwidth usage. As such, we propose a heat-map cache queue which looks at where clients are situated
on the timeline. If groups of players are clear, those should be prioritized.

DANE scalability. Our POC makes use of HTTP and HTTP headers for its message exchange. We
implemented this in Python utilizing the Flask micro-webframework. All streaming related characteristics
and client information are thus saved in memory on the spawned instance. In the event we want to spawn
more instances (e.g., a load balancer such as NGINX1 utilizes multiple instances to balance incoming
traffic), this would result in a fragmented information base. As such, for scalability, we propose the use
of a back-end database solution such as Redis2. This would decouple client related information, required
for making decisions such as bandwidth guidance or smart caching, from the DANE instance itself, thus
allowing multiple DANE instances to share client related information and providing clients with the right
guidance.

1https://www.nginx.com/
2https://redis.io/

Appendices

65

Appendix A

MPEG-DASH Manifest

Figure A.1 represents an MPEG-DASH manifest hierarchy. Listing A.1 shows a real life example of such
a manifest.

MPD

Period Period

AdaptationSet AdaptationSet

Representation

SegmentTemplate

Representation

SegmentList

SegmentURL SegmentURL . . .

. . .

. . .

. . .

Figure A.1: DASH MPD file structure [25]

1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <MPD xmlns=”urn:mpeg:dash:schema:mpd:2011” minBufferTime=”PT1.500S” type=”static”

mediaPresentationDuration=”PT0H0M32.973S” maxSegmentDuration=”PT0H0M3.000S” profiles=”
urn:mpeg:dash:profile:isoff−live:2011,http://dashif.org/guidelines/dash264”>

3 <Period duration=”PT0H0M32.973S”>
4 <AdaptationSet segmentAlignment=”true” maxWidth=”1920” maxHeight=”1080” maxFrameRate=”24” par=”16:9

” lang=”eng”>
5 <SegmentTemplate timescale=”12288” media=”$RepresentationID$/segment $Number$.m4s” startNumber=”1”

duration=”36864” initialization=”$RepresentationID$/segment .mp4” />
6 <Representation id=”1” mimeType=”video/mp4” codecs=”avc1.42C01F” width=”640” height=”360” frameRate=

”24” sar=”1:1” startWithSAP=”1” bandwidth=”485958” />
7 <Representation id=”2” mimeType=”video/mp4” codecs=”avc1.42C01F” width=”640” height=”360” frameRate=

”24” sar=”1:1” startWithSAP=”1” bandwidth=”779332” />
8 <Representation id=”3” mimeType=”video/mp4” codecs=”avc1.42C01F” width=”1280” height=”720” frameRate

=”24” sar=”1:1” startWithSAP=”1” bandwidth=”1465307” />
9 <Representation id=”4” mimeType=”video/mp4” codecs=”avc1.42C01F” width=”1280” height=”720” frameRate

=”24” sar=”1:1” startWithSAP=”1” bandwidth=”2374790” />
10 <Representation id=”5” mimeType=”video/mp4” codecs=”avc1.42C01F” width=”1920” height=”1080”

frameRate=”24” sar=”1:1” startWithSAP=”1” bandwidth=”2956542” />
11 <Representation id=”6” mimeType=”video/mp4” codecs=”avc1.42C01F” width=”1920” height=”1080”

frameRate=”24” sar=”1:1” startWithSAP=”1” bandwidth=”3945761” />
12 <Representation id=”7” mimeType=”video/mp4” codecs=”avc1.42C01F” width=”1920” height=”1080”

frameRate=”24” sar=”1:1” startWithSAP=”1” bandwidth=”5898235” />

66

APPENDIX A. MPEG-DASH MANIFEST 67

13 </AdaptationSet>
14 <AdaptationSet segmentAlignment=”true” lang=”eng”>
15 <SegmentTemplate timescale=”48000” media=”$RepresentationID$/segment $Number$.m4s” startNumber=”1”

duration=”144000” initialization=”$RepresentationID$/segment .mp4” />
16 <Representation id=”8” mimeType=”audio/mp4” codecs=”mp4a.40.2” audioSamplingRate=”48000”

startWithSAP=”1” bandwidth=”60067”>
17 <AudioChannelConfiguration schemeIdUri=”urn:mpeg:dash:23003:3:audio channel configuration:2011” value=”2

” />
18 </Representation>
19 <Representation id=”9” mimeType=”audio/mp4” codecs=”mp4a.40.2” audioSamplingRate=”48000”

startWithSAP=”1” bandwidth=”39891”>
20 <AudioChannelConfiguration schemeIdUri=”urn:mpeg:dash:23003:3:audio channel configuration:2011” value=”2

” />
21 </Representation>
22 </AdaptationSet>
23 <AdaptationSet segmentAlignment=”true” lang=”eng”>
24 <SegmentTemplate timescale=”1000” media=”$RepresentationID$/segment $Number$.m4s” startNumber=”1”

duration=”3000” initialization=”$RepresentationID$/segment .mp4” />
25 <Representation id=”10” mimeType=”application/mp4” codecs=”wvtt” startWithSAP=”1” bandwidth=”1322” /

>
26 </AdaptationSet>
27 </Period>
28 </MPD>

Listing A.1: An MPEG-DASH example manifest [25].

1 <!−− A representation with a SegmentList containing SegmengtURLs −−>
2 <SegmentList>
3 < Initialization sourceURL=”video/500kbit/init.mp4”/>
4 </SegmentList>
5 <Representation id=”480p 500kbps” mimeType=”video/mp4” frameRate=”24” bandwidth=”520929” codecs=”avc1.4

d4015” width=”638” height=”272”>
6 <SegmentList timescale=”1000” duration=”2000”>
7 <SegmentURL media=”video/500kbit/segment 1.m4s”/>
8 <SegmentURL media=”video/500kbit/segment 2.m4s”/>
9 <SegmentURL media=”video/500kbit/segment 3.m4s”/>

10 <SegmentURL media=”video/500kbit/segment 4.m4s”/>
11 <SegmentURL media=”video/500kbit/segment 5.m4s”/>
12 <SegmentURL media=”video/500kbit/segment 6.m4s”/>
13 <SegmentURL media=”video/500kbit/segment 7.m4s”/>
14 <SegmentURL media=”video/500kbit/segment 8.m4s”/>
15 <SegmentURL media=”video/500kbit/segment 9.m4s”/>
16 <SegmentURL media=”video/500kbit/segment 10.m4s”/>
17 <SegmentURL media=”video/500kbit/segment 11.m4s”/>
18 <SegmentURL media=”video/500kbit/segment 12.m4s”/>
19 <SegmentURL media=”video/500kbit/segment 13.m4s”/>
20 <SegmentURL media=”video/500kbit/segment 14.m4s”/>
21 <SegmentURL media=”video/500kbit/segment 15.m4s”/>
22 <SegmentURL media=”video/500kbit/segment 16.m4s”/>
23 <SegmentURL media=”video/500kbit/segment 17.m4s”/>
24 <SegmentURL media=”video/500kbit/segment 18.m4s”/>
25 <SegmentURL media=”video/500kbit/segment 19.m4s”/>
26 <SegmentURL media=”video/500kbit/segment 20.m4s”/>
27 </SegmentList>
28 </Representation>
29

30 <!−− A representation with a SegmentTemplate −−>
31 <Representation id=”480p 500kbps” mimeType=”video/mp4” frameRate=”24” bandwidth=”520929” codecs=”avc1.4

d4015” width=”638” height=”272”>
32 <SegmentTemplate timescale=”1000” duration=”2000” media=”video/500kbit/segment $Number$.m4s” initialization

=”video/500kbit/init.mp4” startNumber=”1”/>
33 </Representation>

Listing A.2: An MPEG-DASH manifest extract showing the difference between a segment template and
a segment list [25].

Appendix B

SAND Default Message Data
Formats

B.1 SAND Message XSD Schema

Listing B.1 shows the default SAND message set. During the work on this thesis, an amendment [35] was
published introducing changes to the XML Schema Definition (XSD) published in the original specification
[29]; the XSD represented in Listing B.1 reflects these changes. Applications who wish to validate SAND
messages can use the provided XSD to check whether or not the provided SAND messages are conform
to the XSD schema.

1 <xs:schema
2 targetNamespace=”urn:mpeg:dash:schema:sandmessage:2016”
3 attributeFormDefault=”unqualified”
4 elementFormDefault=”qualified”
5 xmlns:xs=”http://www.w3.org/2001/XMLSchema”
6 xmlns=”urn:mpeg:dash:schema:sandmessage:2016”>
7

8 <xs:annotation>
9 <xs:appinfo>SAND Messages</xs:appinfo>

10 <xs:documentation xml:lang=”en”>
11 This Schema defines the Server And Network Assisted DASH (SAND) messages for MPEG−DASH.
12 </xs:documentation>
13 </xs:annotation>
14

15 <!−− SAND message: main element −−>
16 <xs:element name=”SANDMessage” type=”SANDEnvelopeType”/>
17

18 <!−− SAND common envelope Type −−>
19 <xs:complexType name=”SANDEnvelopeType”>
20 <xs:choice maxOccurs=”unbounded”>
21 <xs:element name=”AnticipatedRequests” type=”AnticipatedRequestsType”/>
22 <xs:element name=”SharedResourceAllocation” type=”SharedResourceAllocationType”/>
23 <xs:element name=”AcceptedAlternatives” type=”AcceptedAlternativesType”/>
24 <!−− AbsoluteDeadline is not allowed in XML, only in HTTP headers −−>
25 <xs:element name=”MaxRTT” type=”MaxRTTType”/>
26 <xs:element name=”NextAlternatives” type=”NextAlternativesType”/>
27 <xs:element name=”ResourceStatus” type=”ResourceStatusType”/>
28 <xs:element name=”DaneResourceStatus” type=”DaneResourceStatusType”/>
29 <xs:element name=”SharedResourceAssignment” type=”SharedResourceAssignmentType”/>
30 <xs:element name=”MPDValidityEndTime” type=”MPDValidityEndTimeType”/>
31 <xs:element name=”Throughput” type=”ThroughputType”/>
32 <xs:element name=”AvailabilityTimeOffset” type=”AvailabilityTimeOffsetType”/>
33 <xs:element name=”QoSInformation” type=”QoSInformationType”/>
34 <!−− DeliveredAlternative is not allowed in XML, only in HTTP headers −−>
35 <xs:element name=”DaneCapabilities” type=”DaneCapabilitiesType”/>
36 <!−− ISO/ISC 23009−5 Annex D DASH metrics −−>
37 <xs:element name=”TcpList” type=”TcpListType”/>
38 <xs:element name=”HttpList” type=”HttpListType”/>
39 <xs:element name=”RepSwitchList” type=”RepSwitchListType”/>
40 <xs:element name=”BufferLevelList” type=”BufferLevelListType”/>
41 <xs:element name=”PlayList” type=”PlayListType”/>
42 <xs:any namespace=”##other” processContents=”lax” minOccurs=”0” maxOccurs=”unbounded”/>

68

APPENDIX B. SAND DEFAULT MESSAGE DATA FORMATS 69

43 </xs:choice>
44 <xs:attribute name=”senderId” type=”xs:token”/>
45 <xs:attribute name=”generationTime” type=”xs:dateTime”/>
46 <xs:anyAttribute namespace=”##other” processContents=”lax”/>
47 </xs:complexType>
48

49 <!−− SAND message base Type −−>
50 <xs:complexType name=”SANDMessageType”>
51 <xs:attribute name=”messageId” type=”xs:unsignedInt”/>
52 <xs:attribute name=”validityTime” type=”xs:dateTime”/>
53 </xs:complexType>
54

55 <!−− AnticipatedRequests Type −−>
56 <xs:complexType name=”AnticipatedRequestsType”>
57 <xs:complexContent>
58 <xs:extension base=”SANDMessageType”>
59 <xs:sequence>
60 <xs:element name=”Request” type=”AnticipatedRequestType” minOccurs=”1” maxOccurs=”unbounded”/>
61 </xs:sequence>
62 </xs:extension>
63 </xs:complexContent>
64 </xs:complexType>
65

66 <!−− Request Type −−>
67 <xs:complexType name=”AnticipatedRequestType”>
68 <xs:attribute name=”sourceUrl” type=”xs:anyURI” use=”required”/>
69 <xs:attribute name=”range” type=”ByteRangeSetType”/>
70 <xs:attribute name=”targetTime” type=”xs:dateTime”/>
71 </xs:complexType>
72

73 <!−− SharedResourceAllocation Type −−>
74 <xs:complexType name=”SharedResourceAllocationType”>
75 <xs:complexContent>
76 <xs:extension base=”SANDMessageType”>
77 <xs:sequence>
78 <xs:element name=”OperationPoint” type=”OperationPointType” minOccurs=”1” maxOccurs=”unbounded”

/>
79 </xs:sequence>
80 <xs:attribute name=”weight” type=”xs:unsignedInt”/>
81 <xs:attribute name=”allocationStrategy” type=”xs:anyURI”/>
82 <xs:attribute name=”mpdUrl” type=”xs:anyURI”/>
83 </xs:extension>
84 </xs:complexContent>
85 </xs:complexType>
86

87 <!−− OperationPoint Type −−>
88 <xs:complexType name=”OperationPointType”>
89 <xs:attribute name=”bandwidth” type=”xs:unsignedInt” use=”required”/>
90 <xs:attribute name=”quality” type=”xs:unsignedInt”/>
91 <xs:attribute name=”minBufferTime” type=”xs:unsignedInt”/>
92 </xs:complexType>
93

94 <!−− AcceptedAlternatives Type −−>
95 <xs:complexType name=”AcceptedAlternativesType”>
96 <xs:complexContent>
97 <xs:extension base=”SANDMessageType”>
98 <xs:sequence>
99 <xs:element name=”Alternative” minOccurs=”1” maxOccurs=”unbounded”>

100 <xs:complexType>
101 <xs:attribute name=”sourceUrl” type=”xs:anyURI” use=”required”/>
102 <xs:attribute name=”range” type=”ByteRangeSetType”/>
103 <xs:attribute name=”bandwidth” type=”xs:unsignedInt”/>
104 <xs:attribute name=”deliveryScope” type=”xs:unsignedInt”/>
105 </xs:complexType>
106 </xs:element>
107 </xs:sequence>
108 </xs:extension>
109 </xs:complexContent>
110 </xs:complexType>
111

112 <!−− MaxRTT Type −−>
113 <xs:complexType name=”MaxRTTType”>
114 <xs:complexContent>

APPENDIX B. SAND DEFAULT MESSAGE DATA FORMATS 70

115 <xs:extension base=”SANDMessageType”>
116 <xs:attribute name=”maxRTT” type=”xs:unsignedInt” use=”required”/>
117 </xs:extension>
118 </xs:complexContent>
119 </xs:complexType>
120

121 <!−− NextAlternatives Type −−>
122 <xs:complexType name=”NextAlternativesType”>
123 <xs:complexContent>
124 <xs:extension base=”SANDMessageType”>
125 <xs:sequence>
126 <xs:element name=”Alternative” minOccurs=”1” maxOccurs=”unbounded”>
127 <xs:complexType>
128 <xs:attribute name=”sourceUrl” type=”xs:anyURI” use=”required”/>
129 <xs:attribute name=”range” type=”ByteRangeSetType”/>
130 <xs:attribute name=”bandwidth” type=”xs:unsignedInt”/>
131 <xs:attribute name=”deliveryScope” type=”xs:unsignedInt”/>
132 </xs:complexType>
133 </xs:element>
134 </xs:sequence>
135 </xs:extension>
136 </xs:complexContent>
137 </xs:complexType>
138

139 <!−− ClientCapabilities Type −−>
140 <xs:complexType name=”ClientCapabilitiesType”>
141 <xs:complexContent>
142 <xs:extension base=”SANDMessageType”>
143 <xs:sequence>
144 <xs:element name=”SupportedMessage” minOccurs=”0” maxOccurs=”unbounded”>
145 <xs:complexType>
146 <xs:attribute name=”messageType” type=”xs:unsignedInt” use=”required”/>
147 </xs:complexType>
148 </xs:element>
149 </xs:sequence>
150 <xs:attribute name=”messageSetUri” type=”xs:anyURI”/>
151 </xs:extension>
152 </xs:complexContent>
153 </xs:complexType>
154

155 <!−− ResourceStatus Type −−>
156 <xs:complexType name=”ResourceStatusType”>
157 <xs:complexContent>
158 <xs:extension base=”SANDMessageType”>
159 <xs:choice minOccurs=”1” maxOccurs=”unbounded”>
160 <xs:element name=”ResourceURLInfo” type=”ResourceURLInfoType”/>
161 <xs:element name=”ResourceRepresentationInfo” type=”ResourceRepresentationInfoType”/>
162 </xs:choice>
163 </xs:extension>
164 </xs:complexContent>
165 </xs:complexType>
166

167 <!−− ResourceURLInfo Type −−>
168 <xs:complexType name=”ResourceURLInfoType”>
169 <xs:attribute name=”baseUrl” type=”xs:anyURI”/>
170 <xs:attribute name=”status” type=”ResourceStatusTypeStatusType” use=”required”/>
171 <xs:attribute name=”reason” type=”xs:string”/>
172 </xs:complexType>
173

174 <!−− ResourceRepresentationInfo Type −−>
175 <xs:complexType name=”ResourceRepresentationInfoType”>
176 <xs:attribute name=”repId” type=”StringNoWhitespaceType”/>
177 <xs:attribute name=”status” type=”ResourceStatusTypeStatusType” use=”required”/>
178 <xs:attribute name=”reason” type=”xs:string”/>
179 </xs:complexType>
180

181 <!−− ResourceStatus status enumeration −−>
182 <xs:simpleType name=”ResourceStatusTypeStatusType”>
183 < xs:restriction base=”xs:string”>
184 <xs:enumeration value=”available”/>
185 <xs:enumeration value=”cached”/>
186 <xs:enumeration value=”unavailable”/>
187 </xs:restriction>

APPENDIX B. SAND DEFAULT MESSAGE DATA FORMATS 71

188 </xs:simpleType>
189

190 <!−− DaneResourceStatus Type −−>
191 <xs:complexType name=”DaneResourceStatusType”>
192 <xs:complexContent>
193 <xs:extension base=”SANDMessageType”>
194 <xs:sequence>
195 <xs:element name=”resource” type=”ResourceType” minOccurs=”0” maxOccurs=”unbounded”/>
196 <xs:element name=”resourceGroup” type=”xs:string” minOccurs=”0” maxOccurs=”unbounded”/>
197 </xs:sequence>
198 <xs:attribute name=”status” type=”DaneResourceStatusTypeStatusType” use=”required”/>
199 </xs:extension>
200 </xs:complexContent>
201 </xs:complexType>
202

203 <!−− Resource Type −−>
204 <xs:complexType name=”ResourceType”>
205 <xs:simpleContent>
206 <xs:extension base=”xs:anyURI”>
207 <xs:attribute name=”bytes” type=”xs:string”/>
208 </xs:extension>
209 </xs:simpleContent>
210 </xs:complexType>
211

212 <!−− DaneResourceStatus status enumeration −−>
213 <xs:simpleType name=”DaneResourceStatusTypeStatusType”>
214 < xs:restriction base=”xs:string”>
215 <xs:enumeration value=”cached”/>
216 <xs:enumeration value=”unavailable”/>
217 <xs:enumeration value=”promised”/>
218 </xs:restriction>
219 </xs:simpleType>
220

221 <!−− SharedResourceAssignment Type −−>
222 <xs:complexType name=”SharedResourceAssignmentType”>
223 <xs:complexContent>
224 <xs:extension base=”SANDMessageType”>
225 <xs:sequence>
226 <xs:element name=”ResourcePrice” type=”xs:decimal” minOccurs=”0” maxOccurs=”unbounded”/>
227 </xs:sequence>
228 <xs:attribute name=”clientId” type=”xs:token” use=”required”/>
229 <xs:attribute name=”bandwidth” type=”xs:unsignedInt”/>
230 </xs:extension>
231 </xs:complexContent>
232 </xs:complexType>
233

234 <!−− MPDValidityEndTime Type −−>
235 <xs:complexType name=”MPDValidityEndTimeType”>
236 <xs:complexContent>
237 <xs:extension base=”SANDMessageType”>
238 <xs:sequence>
239 <xs:choice>
240 <xs:element name=”MPDUrl” type=”xs:anyURI”/>
241 <xs:element name=”MPD” type=”xs:base64Binary”/>
242 </xs:choice>
243 </xs:sequence>
244 <xs:attribute name=”mpdId” type=”xs:string”/>
245 <xs:attribute name=”publishTime” type=”xs:dateTime”/>
246 <xs:attribute name=”validityEndTime” type=”xs:dateTime” use=”required”/>
247 </xs:extension>
248 </xs:complexContent>
249 </xs:complexType>
250

251 <!−− Throughput Type −−>
252 <xs:complexType name=”ThroughputType”>
253 <xs:complexContent>
254 <xs:extension base=”SANDMessageType”>
255 <xs:attribute name=”baseUrl” type=”xs:anyURI”/>
256 <xs:attribute name=”repId” type=”StringNoWhitespaceType”/>
257 <xs:attribute name=”guaranteedThroughput” type=”xs:unsignedInt” use=”required”/>
258 <xs:attribute name=”percentage” type=”PercentageType”/>
259 </xs:extension>
260 </xs:complexContent>

APPENDIX B. SAND DEFAULT MESSAGE DATA FORMATS 72

261 </xs:complexType>
262

263 <!−− Percentage Type −−>
264 <xs:simpleType name=”PercentageType”>
265 < xs:restriction base=”xs:unsignedInt”>
266 <xs:minInclusive value=”0”/>
267 <xs:maxInclusive value=”100”/>
268 </xs:restriction>
269 </xs:simpleType>
270

271 <!−− AvailabilityTimeOffset Type −−>
272 <xs:complexType name=”AvailabilityTimeOffsetType”>
273 <xs:complexContent>
274 <xs:extension base=”SANDMessageType”>
275 <xs:attribute name=”baseUrl” type=”xs:anyURI”/>
276 <xs:attribute name=”repId” type=”StringNoWhitespaceType”/>
277 <xs:attribute name=”offset” type=”xs:unsignedInt” use=”required”/>
278 </xs:extension>
279 </xs:complexContent>
280 </xs:complexType>
281

282 <!−− QoSInformation Type −−>
283 <xs:complexType name=”QoSInformationType”>
284 <xs:complexContent>
285 <xs:extension base=”SANDMessageType”>
286 <xs:attribute name=”gbr” type=”xs:unsignedInt”/>
287 <xs:attribute name=”mbr” type=”xs:unsignedInt”/>
288 <xs:attribute name=”delay” type=”xs:unsignedInt”/>
289 <xs:attribute name=”pl” type=”xs:unsignedInt”/>
290 </xs:extension>
291 </xs:complexContent>
292 </xs:complexType>
293

294 <!−− DaneCapabilities Type −−>
295 <xs:complexType name=”DaneCapabilitiesType”>
296 <xs:complexContent>
297 <xs:extension base=”SANDMessageType”>
298 <xs:sequence>
299 <xs:element name=”SupportedMessage” type=”xs:unsignedInt” minOccurs=”0” maxOccurs=”unbounded”>
300 <xs:complexType>
301 <xs:attribute name=”messageType” type=”xs:unsignedInt” use=”required”/>
302 </xs:complexType>
303 </xs:element>
304 </xs:sequence>
305 <xs:attribute name=”MessageSetUri” type=”xs:anyURI”/>
306 </xs:extension>
307 </xs:complexContent>
308 </xs:complexType>
309

310 <!−− Metrics as defined in Annex D of ISO/IEC 23009−1 −−>
311 <!−− NOTE the naming convention complies with the keys defined in Annex D
312 and with camelCase convention like the rest of the schema −−>
313

314 <!−− TcpList Type −−>
315 <xs:complexType name=”TcpListType”>
316 <xs:complexContent>
317 <xs:extension base=”SANDMessageType”>
318 <xs:sequence>
319 <xs:element name=”TcpConnection” type=”TcpConnectionType” minOccurs=”1” maxOccurs=”unbounded”/

>
320 </xs:sequence>
321 </xs:extension>
322 </xs:complexContent>
323 </xs:complexType>
324

325 <!−− TcpConnection Type −−>
326 <xs:complexType name=”TcpConnectionType”>
327 <xs:attribute name=”tcpid” type=”xs:unsignedInt” use=”required”/>
328 <xs:attribute name=”dest” type=”xs:string”/>
329 <xs:attribute name=”topen” type=”xs:dateTime”/>
330 <xs:attribute name=”tclose” type=”xs:dateTime”/>
331 <xs:attribute name=”tconnect” type=”xs:unsignedInt”/>
332 </xs:complexType>

APPENDIX B. SAND DEFAULT MESSAGE DATA FORMATS 73

333

334 <!−− HttpList Type −−>
335 <xs:complexType name=”HttpListType”>
336 <xs:complexContent>
337 <xs:extension base=”SANDMessageType”>
338 <xs:sequence>
339 <xs:element name=”HttpTransaction” type=”HttpTransactionType” minOccurs=”1” maxOccurs=”

unbounded”/>
340 </xs:sequence>
341 </xs:extension>
342 </xs:complexContent>
343 </xs:complexType>
344

345 <!−− HttpTransaction Type −−>
346 <xs:complexType name=”HttpTransactionType”>
347 <xs:sequence>
348 <xs:element name=”Trace” type=”TraceType” minOccurs=”0” maxOccurs=”unbounded”/>
349 </xs:sequence>
350 <xs:attribute name=”tcpid” type=”xs:unsignedInt” use=”required”/>
351 <xs:attribute name=”type” type=”HttpRequestTypeType”/>
352 <xs:attribute name=”url” type=”xs:anyURI”/>
353 <xs:attribute name=”actualurl” type=”xs:anyURI”/>
354 <xs:attribute name=”range” type=”ByteRangeSetType”/>
355 <xs:attribute name=”trequest” type=”xs:dateTime”/>
356 <xs:attribute name=”tresponse” type=”xs:dateTime”/>
357 <xs:attribute name=”responsecode” type=”xs:unsignedInt”/>
358 <xs:attribute name=”interval” type=”xs:unsignedInt”/>
359 </xs:complexType>
360

361 <!−− HttpRequestType Type −−>
362 <xs:simpleType name=”HttpRequestTypeType”>
363 < xs:restriction base=”xs:string”>
364 <xs:enumeration value=”MPD”/>
365 <xs:enumeration value=”XLink expansion”/>
366 <xs:enumeration value=”Initialization Segment”/>
367 <xs:enumeration value=”Index Segment”/>
368 <xs:enumeration value=”Media Segment”/>
369 <xs:enumeration value=”Bitstream Switching Segment”/>
370 <xs:enumeration value=”Other”/>
371 </xs:restriction>
372 </xs:simpleType>
373

374 <!−− Trace Type −−>
375 <xs:complexType name=”TraceType”>
376 <xs:sequence>
377 <xs:element name=”b” type=”xs:unsignedInt” minOccurs=”1” maxOccurs=”unbounded”/>
378 </xs:sequence>
379 <xs:attribute name=”s” type=”xs:dateTime” use=”required”/>
380 <xs:attribute name=”d” type=”xs:unsignedInt” use=”required”/>
381 </xs:complexType>
382

383 <!−− RepSwitchList Type −−>
384 <xs:complexType name=”RepSwitchListType”>
385 <xs:complexContent>
386 <xs:extension base=”SANDMessageType”>
387 <xs:sequence>
388 <xs:element name=”RepSwitch” type=”RepSwitchType” minOccurs=”1” maxOccurs=”unbounded”/>
389 </xs:sequence>
390 </xs:extension>
391 </xs:complexContent>
392 </xs:complexType>
393

394 <!−− RepSwitch Type −−>
395 <xs:complexType name=”RepSwitchType”>
396 <xs:attribute name=”t” type=”xs:dateTime” use=”required”/>
397 <xs:attribute name=”mt” type=”xs:unsignedInt”/>
398 <xs:attribute name=”to” type=”StringNoWhitespaceType”/>
399 <xs:attribute name=”lto” type=”xs:unsignedInt”/>
400 </xs:complexType>
401

402 <!−− BufferLevelList Type −−>
403 <xs:complexType name=”BufferLevelListType”>
404 <xs:complexContent>

APPENDIX B. SAND DEFAULT MESSAGE DATA FORMATS 74

405 <xs:extension base=”SANDMessageType”>
406 <xs:sequence>
407 <xs:element name=”BufferLevel” type=”BufferLevelType” minOccurs=”1” maxOccurs=”unbounded”/>
408 </xs:sequence>
409 </xs:extension>
410 </xs:complexContent>
411 </xs:complexType>
412

413 <!−− BufferLevel Type −−>
414 <xs:complexType name=”BufferLevelType”>
415 <xs:attribute name=”t” type=”xs:dateTime” use=”required”/>
416 <xs:attribute name=”level” type=”xs:unsignedInt” use=”required”/>
417 </xs:complexType>
418

419 <!−− PlayList Type −−>
420 <xs:complexType name=”PlayListType”>
421 <xs:complexContent>
422 <xs:extension base=”SANDMessageType”>
423 <xs:sequence>
424 <xs:element name=”Playback” type=”PlaybackType” minOccurs=”1” maxOccurs=”unbounded”/>
425 </xs:sequence>
426 </xs:extension>
427 </xs:complexContent>
428 </xs:complexType>
429

430 <!−− Playback Type −−>
431 <xs:complexType name=”PlaybackType”>
432 <xs:sequence>
433 <xs:element name=”RenderingPeriod” type=”RenderingPeriodType” minOccurs=”1” maxOccurs=”unbounded”/

>
434 </xs:sequence>
435 <xs:attribute name=”start” type=”xs:dateTime”/>
436 <xs:attribute name=”mstart” type=”xs:duration”/>
437 <xs:attribute name=”starttype” type=”StartType”/>
438 </xs:complexType>
439

440 <!−− Start Type −−>
441 <xs:simpleType name=”StartType”>
442 < xs:restriction base=”xs:string”>
443 <xs:enumeration value=”New playout request”/>
444 <xs:enumeration value=”Resume from pause”/>
445 <xs:enumeration value=”Other user request”/>
446 <xs:enumeration value=”Start of a metrics collection period”/>
447 </xs:restriction>
448 </xs:simpleType>
449

450 <!−− RenderingPeriod Type −−>
451 <xs:complexType name=”RenderingPeriodType”>
452 <xs:attribute name=”representationid” type=”StringNoWhitespaceType” use=”required”/>
453 <xs:attribute name=”subreplevel” type=”xs:unsignedInt”/>
454 <xs:attribute name=”start” type=”xs:dateTime”/>
455 <xs:attribute name=”mstart” type=”xs:duration”/>
456 <xs:attribute name=”duration” type=”xs:duration”/>
457 <xs:attribute name=”playbackspeed” type=”xs:decimal”/>
458 <xs:attribute name=”stopreason” type=”StopReasonType”/>
459 </xs:complexType>
460

461 <!−− StopReason Type −−>
462 <xs:simpleType name=”StopReasonType”>
463 < xs:restriction base=”xs:string”>
464 <xs:enumeration value=”Representation switch”/>
465 <xs:enumeration value=”Rebuffering”/>
466 <xs:enumeration value=”User request”/>
467 <xs:enumeration value=”End of Period”/>
468 <xs:enumeration value=”End of content”/>
469 <xs:enumeration value=”End of a metrics collection period”/>
470 <xs:enumeration value=”Failure”/>
471 </xs:restriction>
472 </xs:simpleType>
473

474 <!−− String without white spaces, same as MPD schema −−>
475 <xs:simpleType name=”StringNoWhitespaceType”>
476 < xs:restriction base=”xs:string”>

APPENDIX B. SAND DEFAULT MESSAGE DATA FORMATS 75

477 <xs:pattern value=”[ˆ\r\n\t \p{Z}]∗”/>
478 </xs:restriction>
479 </xs:simpleType>
480

481 <!−− 14.35.1 Byte Ranges of RFC 2616 −−>
482 <xs:simpleType name=”ByteRangeSetType”>
483 < xs:restriction base=”xs:string”>
484 <xs:pattern value=”((\d+−\d∗)|(\d∗−\d+))(,((\d+−\d∗)|(\d∗−\d+)))∗”/>
485 </xs:restriction>
486 </xs:simpleType>
487

488 </xs:schema>

Listing B.1: SAND urn:mpeg:dash:sand:messageset:all:2016 message set XSD schema

B.2 SAND Message header extensions ABNF

Listing B.2 represents the header extensions format in Augmented Backus–Naur Form (ABNF) format.

1 sand−message−value = sand−object
2 sand−object = sand−attr−or−list ∗(”,” sand−attr−or−list)
3 sand−attr−or−list = sand−attribute / sand−list
4 sand−list = ”[” sand−object ∗(”;” sand−object) ”]”
5 sand−attribute = sand−attribute−name ”=” sand−value
6 sand−attribute−name = STRING
7 sand−value = QUOTEDSTRING / QUOTEDURI / TOKEN / INT /
8 BYTERANGE / DATETIME / integer−list
9 integer−list = ”[” INT ∗(”,” INT) ”]”

Listing B.2: SAND urn:mpeg:dash:sand:messageset:all:2016 message header extensions ABNF

Bibliography

[1] Cisco Visual Networking Index. “Forecast and Trends, 2017–2022”. In: Cisco Systems (2018), pp. 1–
7. url: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/white-paper-c11-741490.html (visited on 07/16/2019).

[2] S Shunmuga Krishnan and Ramesh K Sitaraman. “Video stream quality impacts viewer behavior:
inferring causality using quasi-experimental designs”. In: IEEE/ACM Transactions on Networking
21.6 (2013), pp. 2001–2014.

[3] Tobias Hoßfeld et al. “Quantification of YouTube QoE via crowdsourcing.” In: ISM. 2011, pp. 494–
499.

[4] Te-Yuan Huang et al. “Confused, timid, and unstable: picking a video streaming rate is hard”. In:
Proceedings of the 2012 internet measurement conference. ACM. 2012, pp. 225–238.

[5] Speedtest Global Index. url: https://www.speedtest.net/global-index (visited on 07/22/2019).

[6] Netflix Internet Connection Speed Recommendations. url: https://help.netflix.com/nl/node/
306 (visited on 07/22/2019).

[7] Anthony T. S. Ho; Shujun Li. Handbook of Digital Forensics of Multimedia Data and Devices.
John Wiley & Sons, 2015. isbn: 9781118757079. url: https://books.google.be/books?id=
pDU0DAAAQBAJ&pg=PT146#v=onepage&q&f=false (visited on 07/31/2017).

[8] What is Matroska? url: https://www.matroska.org/technical/whatis/index.html (visited
on 07/27/2019).

[9] Intel Quick Sync Video. url: https://www.intel.com/content/www/us/en/architecture-and-
technology/quick-sync-video/quick-sync-video-general.html (visited on 07/27/2019).

[10] ITU Recommendation H.323. url: https://www.itu.int/rec/T-REC-H.323-199611-S/en/
(visited on 07/22/2019).

[11] RTP: A Transport Protocol for Real-Time Applications. url: https://tools.ietf.org/html/
rfc3550 (visited on 07/22/2019).

[12] C. Perkins. RTP: Audio and Video for the Internet. Kaleidoscope Series. Addison-Wesley, 2003.
isbn: 9780672322495. url: https://books.google.be/books?id=OM7YJAy9%5C_m8C.

[13] SIP: Session Initiation Protocol. url: https://tools.ietf.org/html/rfc3261 (visited on
07/22/2019).

[14] The Secure Real-time Transport Protocol (SRTP). url: https://tools.ietf.org/html/rfc3711
(visited on 07/22/2019).

[15] RTP Payload Format for High Efficiency Video Coding (HEVC). url: https://tools.ietf.org/
html/rfc7798 (visited on 07/22/2019).

[16] Shooting Around the Corner: The Problem of Real-time Services. url: https://www.ietfjournal.
org/shooting- around- the- corner- the- problem- of- real- time- services/ (visited on
07/22/2019).

[17] John D Day and Hubert Zimmermann. “The OSI reference model”. In: Proceedings of the IEEE
71.12 (1983), pp. 1334–1340.

[18] Victor Paulsamy and Samir Chatterjee. “Network convergence and the NAT/Firewall problems”.
In: 36th Annual Hawaii International Conference on System Sciences, 2003. Proceedings of the.
IEEE. 2003, 10–pp.

[19] Jon Postel. “Transmission control protocol”. In: (1981).

76

BIBLIOGRAPHY 77

[20] Roy Fielding et al. “Hypertext transfer protocol–HTTP/1.1”. In: (1997).

[21] Tim Berners-Lee, Roy Fielding, Larry Masinter, et al. Uniform resource identifiers (URI): Generic
syntax. 1998.

[22] Michael Thornburgh. “Adobe’s RTMFP Profile for Flash Communication”. In: (2014).

[23] Jay Hoffmann. Flash And Its History On The Web. Aug. 7, 2017. url: https://thehistoryoftheweb.
com/the-story-of-flash/ (visited on 08/01/2019).

[24] Stefan Lederer. MPEG-DASH Content Generation with MP4Box and x264. url: https://bitmovin.
com/mp4box-dash-content-generation-x264/ (visited on 07/28/2019).

[25] Joris Herbots. “Bendwit: Platform for preparing content for adaptive streaming”. 2017.

[26] HTTP Live Streaming. url: https://developer.apple.com/streaming/ (visited on 07/28/2019).

[27] Smooth Streaming. url: https://www.iis.net/downloads/microsoft/smooth- streaming

(visited on 07/28/2019).

[28] Adobe HTTP Dynamic Streaming (HDS). url: https://www.adobe.com/devnet/hds.html

(visited on 07/28/2019).

[29] ISO ISO. IEC 23009-5: 2017 Information technology–Dynamic adaptive streaming over HTTP
(DASH)–Part 5: Server and network assisted DASH (SAND).

[30] ISO ISO. “ISO/IEC 23009-1: 2014: Information technology–Dynamic adaptive streaming over HTTP
(DASH)–Part 1: Media presentation description and segment formats”. In: Geneva, Switzerland:
International Organization for Standardization (2014).

[31] Henry Thompson and Chris Lilley. “XML Media Types”. In: (2014).

[32] Subodh Gangan. “A review of man-in-the-middle attacks”. In: arXiv preprint arXiv:1504.02115
(2015).

[33] Takeshi Imamura et al. “XML encryption syntax and processing version 1.1”. In: W3C, Recom-
mendation (2013).

[34] Cross-Origin Resource Sharing (CORS). url: https://developer.mozilla.org/en-US/docs/
Web/HTTP/CORS.

[35] ISO ISO. IEC 23009-5: 2017 Information technology–Dynamic adaptive streaming over HTTP
(DASH)–Part 5: Server and network assisted DASH (SAND) Amendment 1: Improvements on
SAND messages. 2019.

[36] Media Source Extensions. url: https://w3c.github.io/media-source/.

[37] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. “BOLA: Near-optimal bitrate adapta-
tion for online videos”. In: IEEE INFOCOM 2016-The 35th Annual IEEE International Conference
on Computer Communications. IEEE. 2016, pp. 1–9.

[38] P Leach, Michael Mealling, and Rich Salz. “RFC 4122: A universally unique identifier (UUID) URN
namespace”. In: Proposed Standard, July (2005).

[39] Erich Gamma et al. Design Patterns: Elements of Reusable Object-oriented Software. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 1995. isbn: 0-201-63361-2.

[40] tc-tbf - Linux man page. url: https://linux.die.net/man/8/tc-tbf.

[41] tc - Linux man page. url: https://linux.die.net/man/8/tc.

[42] Guidelines for Implementation: DASH-IF SAND Interoperability. url: https://dashif.org/

docs/DASH-IF-SAND-IOP-v1.0.pdf.

[43] Stefan Pham et al. “Evaluation of shared resource allocation using SAND for ABR streaming”. In:
Proceedings of the 10th ACM Multimedia Systems Conference. ACM. 2019, pp. 165–174.

[44] Jan Willem Kleinrouweler, Britta Meixner, and Pablo Cesar. “Improving video quality in crowded
networks using a DANE”. In: Proceedings of the 27th Workshop on Network and Operating Systems
Support for Digital Audio and Video. ACM. 2017, pp. 73–78.

[45] Saamer Akhshabi, Ali C Begen, and Constantine Dovrolis. “An experimental evaluation of rate-
adaptation algorithms in adaptive streaming over HTTP”. In: Proceedings of the second annual
ACM conference on Multimedia systems. ACM. 2011, pp. 157–168.

BIBLIOGRAPHY 78

[46] Divyashri Bhat et al. “Network assisted content distribution for adaptive bitrate video streaming”.
In: Proceedings of the 8th ACM on Multimedia Systems Conference. ACM. 2017, pp. 62–75.

[47] Parikshit Juluri, Venkatesh Tamarapalli, and Deep Medhi. “SARA: Segment aware rate adaptation
algorithm for dynamic adaptive streaming over HTTP”. In: 2015 IEEE International Conference
on Communication Workshop (ICCW). IEEE. 2015, pp. 1765–1770.

[48] Robert Ricci, Eric Eide, and CloudLab Team. “Introducing CloudLab: Scientific infrastructure for
advancing cloud architectures and applications”. In: ; login:: the magazine of USENIX & SAGE
39.6 (2014), pp. 36–38.

[49] Emmanuel Thomas et al. “Applications and deployments of server and network assisted DASH
(SAND)”. In: (2016).

[50] Github discussion: Comparison between SHAKA player and dash.js player. url: https://github.
com/google/shaka-player/issues/1351.

[51] Nick McKeown et al. “OpenFlow: enabling innovation in campus networks”. In: ACM SIGCOMM
Computer Communication Review 38.2 (2008), pp. 69–74.

