
Hasselt University
Bachelor of Computer Science

Bendwit: Platform for preparing content for
adaptive streaming

Author
Joris Herbots

Promotor
Prof. dr. Peter Quax

Co-promotor
Prof. dr. Wim Lamotte

Mentor
dr. Maarten Wijnants

2016-2017

Acknowledgements

Firstly, I would to thank my mentor Dr. Maarten Wijnants for his continuous guidance, motivation and
support of my bachelor thesis. His insightful feedback and knowledge have been of great value to me
and have helped me a lot during the writing and development of this thesis. I could not have imagined
having a better mentor for my bachelor thesis.

I would also like to thank my promotors professor Peter Quax and professor Wim Lamotte for pro-
viding this unique opportunity. Without their support, it would not have been possible to research this
thesis subject.

My gratitude also goes to my fellow students and friends for their support and many stimulating discus-
sions. In particular, my thanks goes to Maarten Vangeneugden for helping me come up with the name
Bendwit.

Last, but not least, I would like to thank my parents and my sister for their moral support during
the writing of this thesis and my life in general.

i

List of Abbreviations

API Application Programming Interface
ARF Alternate Reference Frame
ASIC Application-Specific Integrated Circuit
CLI Command Line Interface
CODEC Encoding & Decoding
CORS Cross-Origin Resource Sharing
CSV Comma-separated values
CPU Central Processing Unit
DASH Dynamic Adaptive Streaming over HTTP
DASH-IF DASH Industry Forum
FIFO First in, first out
FPGA Field-Programmable Gate Array
FPS Frames Per Second
GRF Golden Reference Frame
GOP Group of pictures
HAS HTTP Adaptive Streaming
HDS Adobe HTTP Dynamic Streaming
HEVC High Efficiency Video Coding
HTTP Hypertext Transfer Protocol
IEC International Electrotechnical Commission
IIS Internet Information Services
ISO International Organization for Standardization
JCT-VC Joint Collaborative Team on Video Coding
JSON JavaScript Object Notation
KB Kilobyte
MPD Media Presentation Description
MSS Microsoft Smooth Streaming
NAT Network Address Translation
OS Operating System
REST Representational state transfer
RTP Real-time Transport Protocol
RTSP Real-time Streaming Protocol
SS Microsoft Smooth Streaming
TCP Transmission Control Protocol
TTML Timed Text Markup Language
UDP User Datagram Protocol
URI Uniform Resource Identifier
VCEG Visual Coding Experts Group
WSGI Web Server Gateway Interface
XML Extensible Markup Language

ii

Contents

Acknowledgements i

Abstract v

Dutch Summary vi

1 Introduction 1
1.1 Problem statement . 1
1.2 Bachelor Thesis Outline . 2
1.3 Competitors . 2

1.3.1 Bitmovin . 2
1.3.2 Coconut . 2

2 Adaptive Streaming 3
2.1 Strengths of Adaptive Streaming over HTTP . 4

2.1.1 Device specifications . 4
2.1.2 Multiple representations . 5
2.1.3 HTTP . 5
2.1.4 Live Content versus On-Demand Content . 5

2.2 Dynamic Adaptive Streaming over HTTP (DASH) . 6
2.2.1 Inner workings . 6
2.2.2 Supported codecs . 7
2.2.3 Manifest . 7

2.3 HTTP Live Streaming (HLS) . 10
2.3.1 Manifest . 10

2.4 Other Adaptive Streaming Implementations . 11
2.4.1 Microsoft Smooth Streaming . 11
2.4.2 Adobe HTTP Dynamic Streaming . 11

3 Used Tools and Codecs 12
3.1 Tools . 12

3.1.1 FFmpeg . 12
3.1.2 FFprobe . 14
3.1.3 MP4Box . 16

3.2 Codecs . 16
3.2.1 H264 . 16
3.2.2 VP8 . 18
3.2.3 AAC . 18

4 Bendwit 19
4.1 Bendwit workflow . 19
4.2 Command Line Tool . 21

4.2.1 Choice of Programming Language . 21
4.2.2 Inner workings . 21
4.2.3 Configuration File . 22
4.2.4 Currently supported codecs . 27
4.2.5 Encountered problems . 28

iii

CONTENTS iv

4.3 Job Scheduler . 31
4.3.1 Choice of Programming Language . 31
4.3.2 Inner Workings . 31

4.4 REST API . 33
4.4.1 Choice of Programming Language . 33
4.4.2 NGINX . 33
4.4.3 Inner Workings . 34

4.5 Website . 39
4.5.1 Choice of Programming Language . 39
4.5.2 Inner Workings . 39

4.6 Python Developer API . 49
4.6.1 Functional methods . 50
4.6.2 Object-Oriented Abstraction . 51

5 Evaluation - Time Study 53
5.1 Test Cases . 53
5.2 Findings . 55

6 Conclusion 58

7 Future work 60
7.1 Containerized Nodes . 60
7.2 Bendwit CLI Performance Boost . 60
7.3 Interactive REST API . 61

Appendices 62

A JSON Schemas 63
A.1 Probes Schema . 63
A.2 HAS Transcodes Schema . 63
A.3 Media Schema . 66

B Evaluation Configurations 68
B.1 Sintel Open Movie REST API Configuration . 68
B.2 Sintel Open Movie Manual Commands . 70

Abstract

Media sharing, in particular video and audio, is becoming more and more popular these days and forms
the bulk of all Internet traffic. People share their personal video recordings on social media like Face-
book1, amateur creators share their works on Youtube2 and Vimeo3, professional media content providers
like Netflix4 stream movies and series, . . . All this media is then watched by millions of people all using
different playback devices. Because of the heterogeneous group of playback devices, all with their own
respective capabilities, it is not easy to create a piece of media which fits all these devices’ playback capa-
bilities. This is where adaptive streaming comes into play, adaptive streaming makes it possible to stream
media to a wide range of playback devices over a variety of different connection speeds. The media itself
is made available in different qualities which the client playback devices gets to choose from. Depending
on the current environment, the client playback device will pick the best possible quality and continue
switching between qualities if the environment changes during playback. An environment consist of the
current available network connection, the device its capabilities, the media resolution, . . .

This thesis consists out of two big parts. The first part consists of an introduction into the world of
streaming and encompasses an in depth chapter about adaptive streaming itself. Older adaptive stream-
ing protocols are compared to the newer variants. This chapter also describes the DASH and HLS
adaptive streaming implementations in detail, these two implementations are currently the standard ones
for adaptive streaming.

The second part describes a platform called Bendwit, which solves to problem of preparing media for
adaptive streaming. Adaptive streaming is a very good solution to the playback device diversity prob-
lem and also the network throughput variability, but it introduces the need for encoding the media into
different qualities, segmenting these qualities and finally creating a manifest file which tells playback
devices what qualities are available and where to find them. This is not a trivial step and requires some
knowledge about streaming. Bendwit tries to solve this problem for novice users by letting them prepare
media for adaptive streaming by means of premade profiles, which are adaptive streaming qualities that
try to reach as many playback devices as possible. Expert users on the other hand can use the Bendwit
platform directly and manually configure the different quality settings. The platform itself consists of five
different parts: the Bendwit CLI tool, the job scheduler, the REST API, the website and the developer
API. The Bendwit CLI tool forms the core of the platform and encompasses all logic pertaining to the
preparation of media content for adaptive streaming, it handles the creation of different qualities, the
segmentation of these qualities and finally the creation of a manifest file. Users interact with the platform
via the REST API which schedules the user request via the job scheduler. If the user desires a simpler
way of interaction with the platform, they can do so by using the website interface or the developer API.

The full adventure of discovering the world of multimedia and the programming experience gained by
creating a platform which incorporates all this knowledge is described in the upcoming chapters. These
findings may be useful for people who are new to this world and want to learn more about adaptive
streaming and how to prepare content for adaptive streaming.

1https://facebook.com/
2https://www.youtube.com/
3https://vimeo.com/
4https://www.netflix.com/browse

v

Dutch Summary

Het delen van media, meer bepaald video en audio, is een steeds vaker voorkomend fenomeen dezer dagen.
Het grootste deel van het Internetverkeer bestaat uit video. Mensen delen steeds vaker hun videomateriaal
op verschillende platformen en bekijken ze achteraf met verschillende apparaten. Hierin schuilt een groot
probleem, elk apparaat heeft zijn eigen mogelijkheden en speelt dus ook enkel media af die hieraan voldoet.

Binnen de wereld van media heerst er een enorme diversiteit tussen de verschillende media container
formaten en de manier waarop de media wordt gecodeerd en gedecodeerd, dit noemt men codecs. Naarge-
lang de capaciteiten van het afspeelapparaat, zal deze al dan niet het media container formaat kunnen
uitlezen en de hierin gemultiplexte gegevens decoderen. Op het web behoren op dit moment H264, H265,
VP8 en VP9 tot de populairste video codecs. Echter is het ondersteunen van een codec op een afspee-
lapparaat niet voldoende. Zo zijn bijvoorbeeld de H264 en H265 codecs nog eens verder onderverdeeld
in profielen en niveaus, deze stellen een bovengrens waaraan een afspeelapparaat moet voldoen om de
gecodeerde media stream live te kunnen decoderen en zodoende een vloeiend beeld aan de gebruiker
te tonen. Hieruit wordt al snel duidelijk dat deze diversiteit een probleem vormt indien de media aan
een zo groot mogelijk doelpubliek getoond moet worden. Zo zal een zwakker afspeelapparaat zoals een
smartphone niet capabel zijn om een hoge kwaliteit H264 gecodeerde video stream af te spelen, maar een
moderne desktop daarentegen wel. Een oplossing zou zijn om de media in een lager niveau te encoderen,
zodat deze ook afspeelt op zwakkere afspeelapparatuur. Echter brengt dit dan weer kwaliteitsverlies met
zich mee voor mensen die de media willen bekijken op een desktop.

Als oplossing voor het voorgaande probleem bestaat er adaptieve transmissie, een manier om een mediabe-
stand aan de gebruiker te tonen zonder kwaliteitsverlies waarbij de grote diversiteit aan afspeelapparatuur
toch ondersteund wordt. Deze thesis heeft als onderwerp het voorbereiden van content voor adaptieve
transmissie. De focus ligt hierbij op twee zeer populaire adaptieve transmissie implementaties genaamd
MPEG-DASH en HLS, dit zijn implementaties die gebruik maken van HTTP voor de transmissie van de
media. Concreet werkt adaptieve transmissie door een mediabestand te transcoderen naar verschillende
kwaliteiten. Typisch houdt dit in dat er minstens een lage kwaliteit aanwezig is voor de zwakkere af-
speelapparaten en een hoge kwaliteit voor de meer geavanceerde afspeelapparatuur. Deze verschillende
kwaliteiten worden vervolgens opgedeeld in kleinere segmenten van typisch 2 à 10 seconden. Uiteindelijk
wordt er een manifest bestand aangemaakt dewelke een overzicht geeft van de verschillende kwaliteiten
en de (netwerk) locaties communiceert waar een afspeelapparaat deze kwaliteitssegmenten kan vinden.
Indien een afspeelapparaat een mediabestand dat klaar is gemaakt voor adaptieve transmissie wilt afspe-
len, downloadt deze simpelweg het manifest en bepaalt hieruit met de huidige omgeving welke kwaliteit
te downloaden. De omgeving wordt bepaald door de huidig bruikbare Internetsnelheid, de resolutie van
de video, de aspect ratio van de display van het afspeelapparaat, . . . Gedurende het afspelen van de media
zal het afspeelapparaat voortdurend de optie hebben om segmenten van een andere kwaliteit op te vragen,
wat een vlotte weergave van de media garandeert zonder haperingen (bv. wanneer de Internetsnelheid
plots snel zou dalen).

Adaptieve transmissie mag dan wel een oplossing vormen voor de grote diversiteit aan afspeelappa-
ratuur, het brengt een extra vereiste met zich mee op vlak van voorbereiden van de media voor adaptieve
transmissie. Een verwerkingsstap die niet zozeer gemakkelijk is voor iemand die geen weet heeft van
welke instellingen het beste zijn voor de gebruikte codecs of hoe een manifest er exact moet uitzien.
Dit is waar het Bendwit platform bij komt kijken. Bendwit is een platform voor de voorbereiding van
media voor adaptieve transmissie, het automatiseert de volledige verwerkingsstap voor de gebruiker. De
werkelijke implementatie van het platform zelf bestaat uit vijf verschillende delen: de Bendwit CLI tool,

vi

CONTENTS vii

de job scheduler, de REST API, de website en de developer API. De kern van het platform bestaat uit de
Bendwit CLI tool, deze voorziet de volledige logica voor het transcoderen van media naar verschillende
kwaliteiten, het segmenteren van deze verschillende kwaliteiten en uiteindelijk de aanmaak van een man-
ifest bestand met de correcte gegevens voor het afspelen van de media. Gedurende de ontwikkeling is er
gekozen om hiervan een standalone tool te maken, zodat deze ook rechtstreeks bruikbaar is voor expert
gebruikers via een CLI. Indien het platform echter in zijn geheel wordt gebruikt, sturen gebruikers via
de REST API verzoeken om media voor te bereiden voor adaptieve transmissie. Dit doen ze door een
aantal kwaliteiten te vermelden dewelke de Bendwit CLI tool zal trachten te gebruiken gedurende het
transcoderen. Deze stap is echter al meer gericht naar expert gebruikers. Beginnende gebruikers kunnen
ook de website interface gebruiken, deze biedt een abstractie aan genaamd profielen. Een profiel is een
voorgemaakte bundel van kwaliteiten die aan een zeker doelpubliek voldoet. Bij keuze van een profiel
weet een beginnende gebruiker dat zijn media zal werken voor het gekozen doelpubliek. De website biedt
tevens ook sleutelpagina aan dewelke sleutels maakt voor de REST API.

Deze thesis bestaat uit twee gedeeltes. Het eerste gedeelte is een diepgaandere beschrijving van adaptieve
transmissie samen met een overzicht van de meest belangrijke codecs en hoe deze werken. Het tweede
gedeelte beschrijft het zonet beschreven Bendwit platform in detail.

Chapter 1

Introduction

Real-time media traffic forms the bulk of modern Internet trafficking. Video traffic in 2020 is estimated
to be 82 percent of the total consumer traffic [1]. In order to keep up with modern standards, media
like video and audio have to adapt to the new standards; including multiple audio-channel support, high
resolution video, . . . This all comes down to more bandwidth usage and thus requires a capable network
architecture to carry this load or a smart way of retrieving the media. Streaming is one of the most used
techniques for retrieving media from a server.

1.1 Problem statement

The Internet at the the time of writing is still growing. A lot of households in the more developed coun-
tries have reliable and fast Internet connections. Belgium for example has an average connection speed
of 15,96Mbit per seconds [2]. Such networks can easily handle high quality media content streaming.
But less reliable connections will suffer from problems ranging from long loading times to poor media
quality. In the past fifteen years, we have also seen a remarkable growth in mobile devices. Reports by
big companies like Google and Cisco show us that more and more people are using these mobile devices
as a daily driver to do their online searching, banking, gaming, media streaming, . . . [3] It is estimated
that traffic from wireless and mobile devices will account for two-thirds of total IP traffic by 2020 [1].
Mobile connections are by nature inferior to wired connections. They are prone to security issues, less
bandwidth, package loss and so on; making media streaming more problematic.

Media streaming, from small Youtube videos1, Netflix series and movies2 to Spotify music3 are just
a small portion of what media streaming entails these days. Due to the worldwide stable network in-
frastructure, people are relying more and more on streaming for their media consumption. Previously
mentioned companies take advantage of this fact to provide us with media streaming as a service.

But what exactly does media streaming mean? Streaming stands for the real-time transfer of data
over a network. In the case of media like audio and especially video this requires a lot of bandwidth;
bandwidth is the amount of data that can be transferred over a network, usually expressed in bits per
second. As mentioned earlier, the amount of bandwidth available depends on the connection speed for
your device. This available bandwidth is not infinite and must thus be used wisely when streaming. It
immediately becomes apparent that media streaming is not an easy process due to these factors. This
is why media providers have to carefully consider how to provide media, how to store the media, how to
speed up loading times . . .

This is where adaptive streaming comes into play. Over the recent years, a lot of genius minds have
figured out ways to provide media content over the Internet whilst taking into account the aforemen-
tioned problems. This is what we call Adaptive Streaming : a way to stream media content to large

1https://www.youtube.com
2https://www.netflix.com
3https://www.spotify.com

1

CHAPTER 1. INTRODUCTION 2

heterogeneous groups of consumers. Under heterogeneity, we understand differences in contextual factors
like terminal capabilities and network conditions. Chapter 2 explains this further into detail.

Preparing media for streaming can form a problematic and tiresome issue. This thesis will implement a
platform which automates this process and makes it accessible for novice users as well as expert users.
The interaction can take place via a REST API, website or a developer API which all communicate with
a tool which is responsible for preparing the media for streaming.

1.2 Bachelor Thesis Outline

This bachelor thesis consists of two parts. The first part of which is a research part where adaptive
streaming is the theme. More specifically the modern equivalent HTTP Adaptive Streaming. The second
part consists of an implementation that allows media content to be prepared for adaptive streaming called
Bendwit. This platform will make use of the two most commonly used HAS implementations: DASH
and HLS, further explained in Sections 2.2 and 2.3 respectively.

The platform itself will consist out of 4 parts:

1. A command line tool for media preparation

2. A REST API which allows interaction with the command line tool

3. A website which will provide graphical easy-to-use access to the platform and its features

4. A developer API for developers who want to use the platform in their coding projects

The implementation of the platform is further explained in Chapter 4.

1.3 Competitors4

There already exist platforms which do what this thesis implementation does. These platforms offer
similar solutions for encoding and preparing media for adaptive streaming, yet typically operate on a
much bigger scale. Sections 1.3.1 and 1.3.2 briefly showcase two popular alternatives to Bendwit.

1.3.1 Bitmovin

Bitmovin5 describes itself as a software to solve complex video problems and is one of the more popular
cloud based encoding solutions on the market to this day. Their platform allows video encoding and
preparing media for adaptive streaming; it has support for MPEG-DASH, HLS and provides a progressive
download fallback [4]. The encoding services are accessible through a website interface or through an
extensive API which can either be accessed directly or through a wide collection of client API’s developed
for the most commonly used programming languages6.
Bitmovin also provides an HTML 5 player capable of MPEG-DASH, HLS and progressive download
playback with cross platform device compatibility as one of its main goals [5].

1.3.2 Coconut

Coconut7 describes itself as a cloud based encoding solution for developers. Compared to the bigger
cloud based encoding solutions like Bitmovin, Coconut is more focused on one task: offering encoding
solutions. This is noticeable in their API, which provides a programming-like way of specifying the
encoding configuration by means of variables and control structures [6]. At the time of writing, Coconut
provides MPEG-DASH and HLS support [7, 8].

4Even though this section is called “Competitors”, Bendwit does not directly compete with these other platforms.
5https://bitmovin.com/
6https://github.com/bitmovin
7http://coconut.co/

Chapter 2

Adaptive Streaming

Streaming typically takes place between a server and a client. The server contains the media and presents
it to the Internet through a public address. The the client is considered to be the device the user employs
to fetch the stream.

As mentioned in Chapter 1, many adaptive streaming implementations exist these days. Older streaming
based solutions like Real-time Streaming Protocol (RTSP), heavily rely on server CPU’s to process and
distribute media to clients. The client only sends commands to the server, so all playback, state and
distribution logic resides on the server side. RTSP uses Real-time Transport Protocol (RTP), which is an
application layer protocol that uses UDP as its transport layer protocol for sending media to clients [9].
The media itself is sent over the network at the bitrate at which it is encoded. Since RTP uses UDP, it
inherits the non-reliable transmission channel and stateless design; thus making packet loss an inevitable
part of the design. Many clients also reside behind NAT devices, blocking incoming UDP requests. This
combination made RTP a difficult to use streaming protocol [10].

Nowadays streaming protocols look at the TCP transport layer protocol for sending media packets or
even at HTTP as the application layer protocol for sending media data. This introduces new problems in
the mix; TCP keeps track of the transmission channel state and thus consumes extra bandwidth [11]. It
also contains built-in algorithms to keep network congestion at a minimum. These extras do not always
have the desired effect when streaming and actually hinder the process. But using HTTP also helps
with the aforementioned network address translation problems faced by UDP. Due to the widespread
availability of HTTP and supporting hard- and software, streaming media becomes easy and is widely
popular these days.

There exist two main streaming solutions over HTTP; Progressive download is the oldest one of them.
Progressive download is a technique where a server supplies media over HTTP and the client can start
media playback before the fetching process is fully finished. This process relies on meta data stored in
the header part of the media file which is being fetched from the server. Progressive download yields the
desired effect of streaming, but does not take client device specifications or other run-time factors like
dynamic network conditions into account. This is where the newest technology called HTTP Adaptive
Streaming (HAS) comes into play.

HAS takes device specifications into account when streaming. The main difference with aforementioned
streaming solutions is that with HAS the server contains multiple quality representations of the same
media. These include different bitrates, resolutions, languages . . . When using HAS the client decides,
based on device specifications, client characteristics and the currently available bandwidth, which media
representation it should download. To make this adaptivity in the media streaming process, the media
itself is not represented by one big file, but is split over several short media segments which all contain a
piece of the media. HAS takes a different approach when it comes to media fetching. In older protocols
like RTSP the server decides which media to send over to the client. With HAS, the client decides which
media segments to fetch from the server. This introduces a separation of concerns in the fetching logic
which benefits the server. Whereas with RTSP the server had to process each client’s needs, this is now
done by the client itself.

3

CHAPTER 2. ADAPTIVE STREAMING 4

HAS introduces new needs for streaming servers. The media should be available in different pre-encoded
media representations. Such servers need a HAS processing step before they can supply the media (See
Figure 2.1). Doing this can be a tedious job which requires some technical know-how about different
media bitrates, codecs accepted by different HAS implementations, which devices support which imple-
mentation and so on.

This chapter will go into detail about the strengths of HAS (see Section 2.1) and two of the most
popular HAS implementations DASH and HLS (see Sections 2.2 and 2.3 respectively) and their inner
workings.

Figure 2.1: Adaptive streaming media preparation overview

2.1 Strengths of Adaptive Streaming over HTTP

The power and popularity of adaptive streaming over HTTP comes from the fact that the World Wide
Web is widely available and implemented on almost every “network-oriented” device. Thus making it
easy for clients with a web browser to enjoy HAS content.

2.1.1 Device specifications

One of the problems that arises when streaming media, is device specification diversity. Not all devices
are equally capable for certain types of media playback. The reason for this being the video codecs used
in media encoding. Codec is a portmanteau-word for coding and decoding, referring to algorithms used
when compressing and decompressing the media files. Certain codecs use complex algorithms in this pro-
cess, requiring the device to have a potent processing unit capable of real-time decoding the media being
streamed. If a device is not capable of meeting the required processing power, playback of the media
will be choppy or not even possible at all. Real-time decoding is usually done by the CPU of a device,
which is called software encoding/decoding. There also exist hardware implemented co-processors which
off-load the task of encoding/decoding from the CPU. In mobile devices this results in reduced power
consumption since these co-processors are more efficient. Hardware (de)coders are usually implemented
on an ASIC or FPGA [12]. GPU manufacturers like Nvidia and AMD also supply their hardware with
firmware which can off-load encoding/decoding from the CPU [13, 14].

A high-level codec uses complex algorithms for compression that results in media files that do not suffer
from quality loss whilst also keeping the file size small. Codecs that use less-complex algorithms can
achieve the same quality but require a bigger file as side effect. For streaming, low file sizes are preferred,
this yields the best result overall but also requires the device to have sufficient processing power available
to decode the compressed media in real-time. At the time of writing, a lot of connected devices are not
able to meet these high requirements, thus requiring media files with less complex compression. Many
implementations of HAS solve this “device specifications” problem by supplying media files with different
encoding settings. If a device has the required processing power, the client can choose to fetch the more
complex encoded media file, resulting in less bandwidth usage overall. Devices such as smartphones

CHAPTER 2. ADAPTIVE STREAMING 5

which generally do not contain powerful processing units will do the opposite and use more bandwidth
to download media files with encoding settings that meet their respective processing power.

2.1.2 Multiple representations

The adaptive nature of HAS does not stop there. HAS also allows media files to have multiple repre-
sentations. The media for example could be available in multiple resolutions, bitrates, contain multiple
audio sources representing different languages. This is a unique feature which is only available in HAS
implementations when compared with other streaming solutions like progressive download; which are
limited to one representation. This makes it possible for HAS clients to seamlessly up-scale or down-scale
the quality as needed, without affecting the smooth playback. By allowing such a big variety in media
representations, HAS can supply the media to a big heterogeneous group of devices. Returning a bigger
audience and thus a larger reach.

2.1.3 HTTP

Many media consumers nowadays do not realize they are using HAS because it is so simple to use. Every
device with network capabilities and a browser can enjoy the fruits that adaptive streaming over HTTP
provides. Older implementations use UDP as their transport layer protocol. This introduces issues when
a firewall or NAT is in place. Devices behind a NAT or firewall do not have their ports or IP-addresses
publicly available at all times for other devices to connect to. In order to use these UDP enabled stream-
ing protocols, techniques like UDP-hole-punching are employed to solve the NAT-traversal issue [15]. In
order to set up UDP-hole punching or allow certain UDP ports to be reachable by a streaming server, a
user often needs to manually configure his firewall and NAT-devices.

HAS circumvents these problems by using the already implemented and widely used HTTP. Clients
typically do not have to configure anything in order to be able to use HAS. HTTP uses the TCP trans-
port layer protocol and all Web servers have to open up the standard ports 80 (http) and 443 (https) [16,
17], therefor additional configuration is not needed. Using HTTP is not the holy grail though, because
of the fact that HTTP uses TCP as its transport layer protocol; HTTP inherits control-flow mechanisms
like congestion control which can cause delay in media transmission [11].

2.1.4 Live Content versus On-Demand Content

When comparing all streaming implementations over HTTP, HAS is the only one with support for the
live-streaming profile. Both Live and On-Demand profiles are built-in to the core architecture of HAS.
Progressive download in contrast, only supports on-demand streaming [18].

HAS Progressive download RTSP
Transport layer protocol TCP TCP UDP
Requires additional transcodes Yes No Possible
Multiple video/audio/subtitle streams support Yes Yes No1

NAT Traversal issues No No Yes
Firewall issues No No Yes
Congestion control Yes Yes No2

Supports live content Yes No Yes

Table 2.1: Summary of streaming implementation properties

1Possible with the necessary adjustments/additions to the application layer.
2See Footnote 1. Possible to achieve with a custom application-layer implementation, requiring extra effort from the

developer.

CHAPTER 2. ADAPTIVE STREAMING 6

2.2 Dynamic Adaptive Streaming over HTTP (DASH)

DASH, also known as MPEG-DASH, stands for Dynamic Adaptive Streaming over HTTP and is one of
the more popular HAS implementations currently available. DASH is being developed by The Moving
Picture Experts Group, which is a working group from ISO/IEC and has been active since 1988 in the
standardization of many video-domain related protocols [19]. Work on DASH began in 2010 and it
became a standard in 2012 [20]. Currently many influential companies in the media streaming industry,
like Google and Netflix, are using DASH [21]. Many of these companies have gathered to create the
DASH-IF, creating guidelines on the usage of MPEG-DASH and also promoting its usage [22]. The
ultimate goal of the DASH effort is interoperability and convergence of one open standard instead of the
many, still in use today, proprietary implementations.

2.2.1 Inner workings

As mentioned in the introduction of Chapter 2, HAS implementations have a separation of concerns when
it comes to streaming and choosing the content that needs to be streamed. This separation of concerns
is made possible by what DASH calls a Media Presentation Description (MPD) file, this is further down
explained in Section 2.2.3. When a client wishes to stream media, the playback device fetches the manifest
file from the streaming server. Once the manifest file has been downloaded, the client is able to parse its
contents and decide, based on the control heuristics, which segments need to be downloaded. The control
heuristics decide which segments are to be fetched based on the information specified in the manifest file
and run-time factors like available bandwidth, screen size and so on. If for example the playback device
has a slow network connection, it will opt for segments with the lowest bandwidth. The control heuristics
will always try their best to at least show something as fast as possible to the client. If during playback
the device encounters a change in its environment, for example a less congested network connection, it
can alter its pickings from the manifest file accordingly (e.g., upgrade to a better quality representation).
Because the client is responsible for the picking logic, the server does not have to support this burden
like with older adaptive streaming implementations, but this does induce complexity and the need for
processing power at the client its side.
Figure 2.2 depicts the previously explained process in a diagram. The streaming server is represented on
the left side, the client logic is represented on the right side. The connection of the two is represented
by a HTTP 1.1 connection. As the MPD gets delivered to the client side, the client will decide which
actions to take and request segments via the HTTP connection.

Figure 2.2: DASH Workings (Source: Iraj Sogadar/Microsoft)

CHAPTER 2. ADAPTIVE STREAMING 7

2.2.2 Supported codecs

DASH is unique in its kind, in that it is codec agnostic. This implies that DASH does not care what sort
of codec is used when encoding the media that it is supposed to stream. Other HAS implementations like
Adobe HDS, Microsoft SS . . . all push towards the use of H.264 [24, 23]; an MPEG standard for video
coding and decoding [25]. Due to the popular choice of the H264 (further explained in Section 3.2.1),
DASH-IF also opted for H264 as their main codec of choice [22].

2.2.3 Manifest

The DASH implementation uses XML for formatting its MPD file. Due to the nature of XML, this creates
a hierarchical structure. Figure 2.3 depicts this. Every MPD file represents a single streamable piece of
media. The media itself can contain multiple streams3. Every MPD file contains at least one period, a
period represents a portion of the media being streamed, for example a chapter from a movie or a piece
of advertisement. Every period contains at least one adaptation set, which represents a stream. Typically
an MPD contains at least a video and audio adaptation set. Every adaptation set in turn contains at least
one representation. A representation allows an adaptation set to be represented in multiple formats. A
video adaptation set could for example contain 2 representations which have different bitrates or display
sizes, allowing the DASH client to pick the one most fit for its environment. A representation contains
segments, segments are the actual media files themselves. Usually a media representation is split into
segments of 2 to 3 seconds in duration. Because of this, a single representation could easily contain over
a 1000 segments. These are represented by segment URLs in a segment list or by a segment template.
The template solution is the preferred way to go most of the time, since a representation containing a
large segment list can result in large MPD files [20]; listings 2.2 and 2.1 show this difference. Listing 2.2
shows an example of a fully configured MPD containing one video adaption set, two audio adaptation
sets and two subtitle adaptation sets. The video adaptation set contains two representations using the
template system to locate its segments.

The creation of a DASH manifest can be done through various software packets and platforms, this
is further explained in Chapter 3 and 1.3 respectively. The playback of a DASH manifest is done by
a video player which can interpret the DASH format. For the Web there exists the BitDash player by
Bitmovin4, the official Dash.js player from DASH-IF5, the Shaka Player by Google6,. . . For the desktop
there exists a plugin for VLC media player which allows DASH playback [26] as well as libndash7, an
open source framework which can be used to play DASH content in software.

3A stream represents a data sequence which can be read by programs. In the world of media, a stream usually represents
a single piece of video, audio or subtitles. A single stream can contain multiplexed media.

4https://bitmovin.com/html5-player/
5https://github.com/Dash-Industry-Forum/dash.js
6https://github.com/google/shaka-player
7https://github.com/google/ndash

CHAPTER 2. ADAPTIVE STREAMING 8

MPD

Period Period

AdaptationSet AdaptationSet

Representation

SegmentTemplate

Representation

SegmentList

SegmentURL SegmentURL . . .

. . .

. . .

. . .

Figure 2.3: DASH MPD file structure

1 <!-- A representation with a SegmentList containing SegmengtURLs -->

2 <SegmentList>

3 <Initialization sourceURL="video/500kbit/init.mp4"/>

4 </SegmentList>

5 <Representationid="480p 500kbps" mimeType="video/mp4" frameRate="24" bandwidth="520929

" codecs="avc1.4d4015" width="638" height="272">

6 <SegmentList timescale="1000" duration="2000">

7 <SegmentURL media="video/500kbit/segment_1.m4s"/>

8 <SegmentURL media="video/500kbit/segment_2.m4s"/>

9 <SegmentURL media="video/500kbit/segment_3.m4s"/>

10 <SegmentURL media="video/500kbit/segment_4.m4s"/>

11 <SegmentURL media="video/500kbit/segment_5.m4s"/>

12 <SegmentURL media="video/500kbit/segment_6.m4s"/>

13 <SegmentURL media="video/500kbit/segment_7.m4s"/>

14 <SegmentURL media="video/500kbit/segment_8.m4s"/>

15 <SegmentURL media="video/500kbit/segment_9.m4s"/>

16 <SegmentURL media="video/500kbit/segment_10.m4s"/>

17 <SegmentURL media="video/500kbit/segment_11.m4s"/>

18 <SegmentURL media="video/500kbit/segment_12.m4s"/>

19 <SegmentURL media="video/500kbit/segment_13.m4s"/>

20 <SegmentURL media="video/500kbit/segment_14.m4s"/>

21 <SegmentURL media="video/500kbit/segment_15.m4s"/>

22 <SegmentURL media="video/500kbit/segment_16.m4s"/>

23 <SegmentURL media="video/500kbit/segment_17.m4s"/>

24 <SegmentURL media="video/500kbit/segment_18.m4s"/>

25 <SegmentURL media="video/500kbit/segment_19.m4s"/>

26 <SegmentURL media="video/500kbit/segment_20.m4s"/>

27 </SegmentList>

28 </Representation>

29

30 <!-- A representation with a SegmentTemplate -->

31 <Representation id="480p 500kbps" frameRate="24" bandwidth="520929" codecs="avc1.4

d4015" width="638" height="272">

32 <SegmentTemplate timescale="1000" duration="2000" media="video/500kbit/segment_$
Number$.m4s" initialization="video/500kbit/init.mp4" startNumber="1"/>

33 </Representation>

CHAPTER 2. ADAPTIVE STREAMING 9

Listing 2.1: DASH MPD SegmentUrl vs. SegmentTemplate representations

1 <?xml version="1.0" encoding="UTF-8"?>

2 <MPD xmlns="urn:mpeg:dash:schema:mpd:2011" minBufferTime="PT1.500S" type="static"

mediaPresentationDuration="PT0H0M32.973S" maxSegmentDuration="PT0H0M3.000S"

profiles="urn:mpeg:dash:profile:isoff-live:2011,http://dashif.org/guidelines/

dash264">

3 <Period duration="PT0H0M32.973S">

4 <AdaptationSet segmentAlignment="true" maxWidth="1920" maxHeight="1080"

maxFrameRate="24" par="16:9" lang="eng">

5 <SegmentTemplate timescale="12288" media="$RepresentationID$/segment_$Number$.
m4s" startNumber="1" duration="36864" initialization="$RepresentationID$/segment_.
mp4" />

6 <Representation id="1" mimeType="video/mp4" codecs="avc1.42C01F" width="640"

height="360" frameRate="24" sar="1:1" startWithSAP="1" bandwidth="485958" />

7 <Representation id="2" mimeType="video/mp4" codecs="avc1.42C01F" width="640"

height="360" frameRate="24" sar="1:1" startWithSAP="1" bandwidth="779332" />

8 <Representation id="3" mimeType="video/mp4" codecs="avc1.42C01F" width="1280"

height="720" frameRate="24" sar="1:1" startWithSAP="1" bandwidth="1465307" />

9 <Representation id="4" mimeType="video/mp4" codecs="avc1.42C01F" width="1280"

height="720" frameRate="24" sar="1:1" startWithSAP="1" bandwidth="2374790" />

10 <Representation id="5" mimeType="video/mp4" codecs="avc1.42C01F" width="1920"

height="1080" frameRate="24" sar="1:1" startWithSAP="1" bandwidth="2956542" />

11 <Representation id="6" mimeType="video/mp4" codecs="avc1.42C01F" width="1920"

height="1080" frameRate="24" sar="1:1" startWithSAP="1" bandwidth="3945761" />

12 <Representation id="7" mimeType="video/mp4" codecs="avc1.42C01F" width="1920"

height="1080" frameRate="24" sar="1:1" startWithSAP="1" bandwidth="5898235" />

13 </AdaptationSet>

14 <AdaptationSet segmentAlignment="true" lang="eng">

15 <SegmentTemplate timescale="48000" media="$RepresentationID$/segment_$Number$.
m4s" startNumber="1" duration="144000" initialization="$RepresentationID$/segment_
.mp4" />

16 <Representation id="8" mimeType="audio/mp4" codecs="mp4a.40.2" audioSamplingRate

="48000" startWithSAP="1" bandwidth="60067">

17 <AudioChannelConfiguration schemeIdUri="

urn:mpeg:dash:23003:3:audio_channel_configuration:2011" value="2" />

18 </Representation>

19 <Representation id="9" mimeType="audio/mp4" codecs="mp4a.40.2" audioSamplingRate

="48000" startWithSAP="1" bandwidth="39891">

20 <AudioChannelConfiguration schemeIdUri="

urn:mpeg:dash:23003:3:audio_channel_configuration:2011" value="2" />

21 </Representation>

22 </AdaptationSet>

23 <AdaptationSet segmentAlignment="true" lang="eng">

24 <SegmentTemplate timescale="1000" media="$RepresentationID$/segment_$Number$.m4s
" startNumber="1" duration="3000" initialization="$RepresentationID$/segment_.mp4"
/>

25 <Representation id="10" mimeType="application/mp4" codecs="wvtt" startWithSAP="1

" bandwidth="1322" />

26 </AdaptationSet>

27 </Period>

28 </MPD>

Listing 2.2: DASH MPD example

CHAPTER 2. ADAPTIVE STREAMING 10

2.3 HTTP Live Streaming (HLS)

HLS is a HAS implementation being developed by Apple [27]. It contains many similarities to the
previously explained DASH (see Section 2.2). HLS has been in development since 2009 and has currently
been deployed to all Apple devices still receiving updates [28]. The main difference with DASH is that
HLS is not a global standard but a proprietary Apple specification for media streaming. All developers
are required to follow the strict rules set by Apple before they can deploy their software on Apple
hardware [29]. As a result of this, Apple has created a closed ecosystem where HLS is the primary HAS
implementation being used in all Apple software and hardware. Many other organizations like Google,
Mozilla, Microsoft. . . have accepted this and are also deploying HLS support in their software/browsers
to keep a competing position with Apple software.

2.3.1 Manifest

HLS structures its manifest in UTF-8 plain text files containing only URIs for its media locations and
descriptive tags. A HLS manifest, also called a playlist, is identified with the .m3u8 or .m3u extension
and the mime-type application/vnd.apple.mpegurl or audio/mpegurl. A playlist can either be a master
playlist or a media playlist. A master playlist only contains URIs to media playlists, whilst a media
playlist only contains URIs to actual media resources like video, audio, subtitles . . . [28]/

Master M3U8

Media Playlist URI Media Playlist URI . . .

Figure 2.4: HLS M3U8 Master Playlist Structure

Media M3U8

Media URI Media URI . . .

Figure 2.5: HLS M3U8 Playlist Structure

1 #EXTM3U

2 #EXT-X-TARGETDURATION:10

3 #EXT-X-VERSION:3

4 #EXTINF:9.009,

5 http://media.example.com/first.ts

6 #EXTINF:9.009,

7 http://media.example.com/second.ts

8 #EXTINF:3.003,

9 http://media.example.com/third.ts

10 #EXT-X-ENDLIST

Listing 2.3: HLS Media Playlist

1 #EXTM3U

2 #EXT-X-STREAM-INF:BANDWIDTH=1280000,AVERAGE-BANDWIDTH=1000000

3 http://example.com/low.m3u8

4 #EXT-X-STREAM-INF:BANDWIDTH=2560000,AVERAGE-BANDWIDTH=2000000

5 http://example.com/mid.m3u8

6 #EXT-X-STREAM-INF:BANDWIDTH=7680000,AVERAGE-BANDWIDTH=6000000

7 http://example.com/hi.m3u8

8 #EXT-X-STREAM-INF:BANDWIDTH=65000,CODECS="mp4a.40.5"

CHAPTER 2. ADAPTIVE STREAMING 11

9 http://example.com/audio-only.m3u8

Listing 2.4: HLS Master Playlist

2.4 Other Adaptive Streaming Implementations

Even though DASH has been the standard for adaptive streaming since 2012 and Apple clings onto HLS,
other adaptive streaming implementations have been created and are still used to this day. This section
will describe two other adaptive streaming implementations invented by Microsoft and Adobe.

2.4.1 Microsoft Smooth Streaming

Microsoft Smooth Streaming is an adaptive streaming implementation based on progressive download
[30]. It provides adaptive streaming based on the MP4 container format. Silverlight8 is the preferred
client for using MSS as it comes with default adaptive streaming heuristics [31]. MSS is not Silverlight
exclusive though, any client that capable of decoding H264 and/or VC-1 encoded video streams, AAC
and/or WMA encoded audio streams and HTTP is able to implement MSS [30]. The Microsoft Server
operating system can support adaptive streaming by enabling the IIS media services Smooth Streaming
extension [31].

The way MSS works is by providing the client with a manifest that specifies different quality URL’s
for the media being streamed. The client then decides, based upon the current environment (same logic
as DASH applies here, see Section 2.2.1 for more information) which quality it wants to download. The
content itself is delivered in chunks as specified by the progressive download protocol [32]. The different
qualities are stored as one media file at server side which is not necessarily the case with DASH.

2.4.2 Adobe HTTP Dynamic Streaming

HTTP Dynamic Streaming is an adaptive streaming implementation by Adobe. It is built natively into
Adobe Flash Player9 and Adobe AIR10 [33]. Files are encoded into the F4F container format, which is
based upon the MP4 container format [24, 34]. Only H264 or VP6 encoded video streams and MP3 or
AAC encoded audio streams are possible.

Adobe HDS works exactly like MSS in that it provides a manifest to the client which specifies the
different qualities that are available for the media being streamed [35].

8https://www.microsoft.com/silverlight/
9https://get.adobe.com/nl/flashplayer/

10https://get.adobe.com/air/

Chapter 3

Used Tools and Codecs

The world of media is one that has been in development for centuries. There are evidences that the
concept of the camera-obscura has been known to men since the Palaeolithic era. Mankind has always
tried to capture moments; be it with the older analog technology or the newer more used digital variant,
sometimes called new media. This new media, stored in digital format, is easy to copy, modify, share,
. . . which contributes to its popularity.

Digital media is stored in so called container formats, sometimes also called wrappers. A container
format defines the overall structure of a file, including how the file’s video, audio, metadata and index
information are multiplexed together [36]. A container format however does not define how the video
and/or audio is encoded. Container formats are usually indicated by giving a media file a certain ex-
tension. For example, video can be identified by one of the following (but not limited to): AVI, MP4,
WEBM, FLV, MOV,. . . Every container format has its own traits and supported codecs which are all
specified in its metadata such that a playback device can properly decode the content. Simpler container
formats are exclusive to one audio or video stream (e.g., WAV is a popular Windows audio only container
format). More advanced container formats allow multiple video and audio streams to be contained in a
single file (e.g., MKV is an open standard container format intended to serve as a universal format for
storing multimedia [37]). The choice of a container depends on the needs of the media creator and/or
(the limitation of) the target audience.

This chapter will explain the different tools and media codecs used during the development of Bend-
wit (see Chapter 4 for more details). Section 3.1 will explain the different tools and why they were
chosen. Section 3.2 will give a brief introduction to codecs and the codecs that Bendwit supports at the
time of writing.

3.1 Tools

We can easily see that the digital media world is a broad one with many tools, codecs, container for-
mats,. . . With the scope of this thesis being Adaptive Streaming, only a few tools were fit for preparing
content for adaptive streaming. To narrow it down: we need tools that can be operated through self-
written code, either via an API or by passing command line arguments. Sections 3.1.1, 3.1.2 and 3.1.3
describe the chosen tools and why they were picked for this thesis.

3.1.1 FFmpeg

FFmpeg is an open source project that creates pieces of software for media handling. The name FFmpeg
itself is used for one of the main pieces of software and the name of the project itself. The name is
inspired by MPEG with “ff” standing for “fast forward” [38].

12

CHAPTER 3. USED TOOLS AND CODECS 13

One of the requirements for this thesis was a tool which could perform the transcoding1 of media files.
This immediately brought up the popular choices: FFmpeg from FFmpeg and avconv from Libav. FFm-
peg has been in development since 2000 [39]. Libav on the other hand is a fork that took place in 2010
because of internal team struggles [40]. Both projects share the same goal and differ only slightly. At the
time of writing, FFmpeg is more stable when it comes to bugfixes[41], making it the preferred choice for
this thesis.

Transcoding Process

The FFmpeg command line tool currently supports over a hundred codecs [42], making it easy to transcode
media from various sources to the ones our thesis implementation will support (further explained in
Chapter 4). FFmpeg has a powerful transcoding process, as depicted in Figure 3.1.

_______ ______________

| | | |

| input | demuxer | encoded data | decoder

| file | ---------> | packets | -----+

|_______| |______________| |

v

| |

| decoded |

| frames |

|_________|

________ ______________ |

| | | | |

| output | <-------- | encoded data | <----+

| file | muxer | packets | encoder

|________| |______________|

Figure 3.1: FFmpeg transcoding process (Source: FFmpeg documentation)

FFmpeg comes with a plethora of parameters for encoding media [43], the tool works by supplying pa-
rameters via the command line interface. FFmpeg can read from an arbitrary amount of input files and
write to an arbitrary amount of output files2. It handles audio and video conversion and manipulation
in a fast manner. Individual stream options like codec choice and codec specific options (see Section
3.2 for more information) are also possible. Depending on the container format used, stream selection
is either done automatically or through the more advanced manual -map parameter. FFmpeg chooses

video streams automatically based on the highest resolution, audio streams based on the most channels
and subtitles on the first stream it encounters [43].

FFmpeg will serve the purpose as a transcoding tool in the implementation of this thesis. In order
to prepare media for adaptive streaming, the input file3 needs its streams split and transcoded into
individual files of different qualities.

Adaptive Streaming Support

The way FFmpeg works, is by incorporating many external libraries and codecs and making them available
from the confines of a single tool. At the time time of writing, FFmpeg only includes the Google
Webmproject tools[44] to create DASH content in WebM container format with the VP9 codec. Support
for HLS content is built-in natively. Since the focus of this thesis is on DASH with codecs other than

1The conversion of one encoding format to another.
2A file can be supplied as a pipe, network stream, local file, . . .
3Bendwit will only work with one input file at a time. It will not make use of the possibility provided by FFmpeg to

supply an arbitrary amount of input files.

CHAPTER 3. USED TOOLS AND CODECS 14

VP9 and HLS content, another tool (explained in Section 3.1.3) will be required for DASH content
preparation.

3.1.2 FFprobe

As explained in Section 3.1.1, the FFmpeg project bundles a lot of tools to make command line handling
of media possible. One of these tools is FFprobe [45]. As the name suggests, the tool allows probing after
metadata in media files. The metadata retrieved, depends on the container format and codec type being
used. General metadata which always gets extracted includes (but is not limited to): stream codec, video
height, video width, video framerate, audio channel layout, subtitle language, . . .
FFprobe allows to specify a “writer” format through the -print format parameter, which is essentially

the format in which the metadata should be returned. At the time of writing FFprobe supports the
following formats: default (human readable), csv, json, xml, ini and flatfile [46]. By printing out the
probed metadata in a data format like json or xml, other programs are able to interpret it, and thus
acquire basic information about the media file to work with. This makes FFprobe an interesting tool
which will be used for basic information extraction in the thesis implementation. Listing 3.1 shows the
probe results of the Sintel open movie media file project4 in the default writer format. It is even possible
to probe the individual streams further by applying the -show streams parameter to the FFprobe tool.
Listing 3.2 show an extract of stream 0, which represents the video stream.

1 Input #0, matroska,webm, from 'Sintel.2010.1080p.mkv':
2 Metadata:

3 encoder : libebml v1.0.0 + libmatroska v1.0.0

4 creation_time : 2011-04-25T12:57:46.000000Z

5 Duration: 00:14:48.03, start: 0.000000, bitrate: 10562 kb/s

6 Chapter #0:0: start 0.000000, end 103.125000

7 Metadata:

8 title : Chapter 01

9 Chapter #0:1: start 103.125000, end 148.667000

10 Metadata:

11 title : Chapter 02

12 Chapter #0:2: start 148.667000, end 349.792000

13 Metadata:

14 title : Chapter 03

15 Chapter #0:3: start 349.792000, end 437.208000

16 Metadata:

17 title : Chapter 04

18 Chapter #0:4: start 437.208000, end 472.075000

19 Metadata:

20 title : Chapter 05

21 Chapter #0:5: start 472.075000, end 678.833000

22 Metadata:

23 title : Chapter 06

24 Chapter #0:6: start 678.833000, end 744.083000

25 Metadata:

26 title : Chapter 07

27 Chapter #0:7: start 744.083000, end 888.032000

28 Metadata:

29 title : Chapter 08

30 Stream #0:0(eng): Video: h264 (High), yuv420p(tv, bt709/unknown/unknown,

progressive), 1920x818, SAR 1:1 DAR 960:409, 24 fps, 24 tbr, 1k tbn, 48 tbc

31 Stream #0:1(eng): Audio: ac3, 48000 Hz, 5.1(side), fltp, 640 kb/s

32 Metadata:

33 title : AC3 5.1 @ 640 Kbps

34 Stream #0:2(ger): Subtitle: subrip

35 Stream #0:3(eng): Subtitle: subrip

4https://durian.blender.org/

CHAPTER 3. USED TOOLS AND CODECS 15

36 Stream #0:4(spa): Subtitle: subrip

37 Stream #0:5(fre): Subtitle: subrip

38 Stream #0:6(ita): Subtitle: subrip

39 Stream #0:7(dut): Subtitle: subrip

40 Stream #0:8(pol): Subtitle: subrip

41 Stream #0:9(por): Subtitle: subrip

42 Stream #0:10(rus): Subtitle: subrip

43 Stream #0:11(vie): Subtitle: subrip

Listing 3.1: Probe output of the Sintel open movie project (durian.blender.org)

1 [STREAM]

2 index=0

3 codec_name=h264

4 codec_long_name=H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10

5 profile=High

6 codec_type=video

7 codec_time_base=1/48

8 codec_tag_string=[0][0][0][0]

9 codec_tag=0x0000

10 width=1920

11 height=818

12 coded_width=1920

13 coded_height=818

14 has_b_frames=2

15 sample_aspect_ratio=1:1

16 display_aspect_ratio=960:409

17 pix_fmt=yuv420p

18 level=41

19 color_range=tv

20 color_space=bt709

21 color_transfer=unknown

22 color_primaries=unknown

23 chroma_location=left

24 field_order=progressive

25 timecode=N/A

26 refs=1

27 is_avc=true

28 nal_length_size=4

29 id=N/A

30 r_frame_rate=24/1

31 avg_frame_rate=24/1

32 time_base=1/1000

33 start_pts=0

34 start_time=0.000000

35 duration_ts=N/A

36 duration=N/A

37 bit_rate=N/A

38 max_bit_rate=N/A

39 bits_per_raw_sample=8

40 nb_frames=N/A

41 nb_read_frames=N/A

42 nb_read_packets=N/A

43 DISPOSITION:default=0

44 DISPOSITION:dub=0

45 DISPOSITION:original=0

46 DISPOSITION:comment=0

47 DISPOSITION:lyrics=0

48 DISPOSITION:karaoke=0

CHAPTER 3. USED TOOLS AND CODECS 16

49 DISPOSITION:forced=0

50 DISPOSITION:hearing_impaired=0

51 DISPOSITION:visual_impaired=0

52 DISPOSITION:clean_effects=0

53 DISPOSITION:attached_pic=0

54 DISPOSITION:timed_thumbnails=0

55 TAG:language=eng

56 [/STREAM]

Listing 3.2: Probe output of the Sintel open movie project (durian.blender.org) with the
-show streams parameter set

3.1.3 MP4Box

GPAC is an open source software project which created the tool MP4Box: a multimedia packager with
the capability of preparing content for adaptive streaming over HTTP [47, 48]. MP4Box was one of the
first tools to support DASH manifest creation and media file segmentation, even before it was considered
a standard [49]. Because of this, MP4Box offers a stable solution for DASH content creation which will
be used in the thesis implementation.

3.2 Codecs

Every video and audio content stream inside a container format contains information which has been
encoded with its specific codec, as briefly explained in Section 2.1.1. A codec can encode a piece of
media into a specific stream format and later decode it again using compression and decompression
algorithms. There exist many different codecs, some of which are more popular than others. The thesis
implementation explained in Chapter 4 uses some of the more popular codecs in order to reach a wide
target audience of playback devices capable of decoding the codecs explained further in Sections 3.2.1,
3.2.2 and 3.2.3.

3.2.1 H264

MPEG-4 Part 10, Advanced Video Coding (MPEG-4 AVC), more commonly known as H264, is a devel-
opment effort by the MPEG and CVEG gathered under the joint name JCT-VC. H264 is a proprietary
codec protected by a multitude of patents from different parties. The patents are grouped together into
a license governed by MPEG-LA5 [50]. Royalty payment is required when H264 technology is used for
commercial purposes. MPGEG-LA has allowed free streaming of H264 encoded media if and only if the
media being streamed is free for the end users [51].

As of 2014, Apple announced their full support for H264 and began using it as their primary video
codec in all their software (Quicktime, iTunes, DVDs, . . .) [52]. Because of Apple’s massive success
during the years to follow [53], H264 would gain more and more attention. It would even be such a thorn
in the eye of bigger companies like Google that they would create an open source alternative called VP8
(see Section 3.2.2 for more information). As of 2017, Apple and others are moving to the successor of
H264: HEVC also known as H265. However most streamable video content as of 2017 is still available
in H264 encoded format, making it one of the more popularly used codecs.

Profiles and Levels

H264 defines a set of capabilities and constraints, called Profiles and Levels respectively.

A profile tells a playback device exactly what is needed in order to be able to decode a video stream.
Many profiles exist, but the most important ones are baseline , main and high profiles. Baseline

5The MPEG-LA license does not include all patents technologies used within H264.

CHAPTER 3. USED TOOLS AND CODECS 17

targets the more low-end playback devices or devices that require a more robust video stream due to poor
Internet connection. Main was created for standard-digital TV broadcast quality video. High profiles on
the other hand are created for high definition content [54]. Depending on the profile the playback device
supports and the profile used to encode a video stream, H264 offers a multitude of different features. The
baseline and main profiles for example only support up to 8bit color depth, high profiles on the other hand
support up to 14bit color depth. The complexity of a profile defines how efficiently the compression takes
place, this however also means more computing overhead in order to encode and decode the video stream.

A level imposes a constraint on top of a profile. It specifies the required decoding performance of a
decoder, as it it is expressed in terms of the maximum frame rate, resolution, bit rate, . . . the decoder
can handle [54].

Inter frame technology

A video stream consists of picture frames put in a sequence after each other. In order to compress a video
stream as much as possible, some frames are expressed in terms of their neighboring frames when using
inter frame coding technology. The amount of picture frames shown within a time periode is called the
framerate, sometimes also referred to as the amount of frames per second. If for example a video stream
uses a framerate of 60, the viewer will be shown 60 picture frames a second. Most frames will contain
redundant information because of the high amount of frames shown within a one second period, which
is exactly what inter framing utilises. By dividing a frame into smaller parts called macroblocks, a block
matching algorithm can be used to try to estimate similar blocks in another frame. This information
is encoded within a motion vector which describes the transformation required from one 2D image to
another, or in the case of a video stream: the transformation of the current frame to the reference frame.
This process is called motion estimation.

Figure 3.2: A forward motion predication visualisation of the Sintel, Durian open movie project.
An upward movement of the character on the left and a downward movement of the character on
the right can be seen.

H264 makes use of inter framing in order to compress the file size of a video as much as possible within
compliance of the specified profile. The codec makes use of three types of frames: I frames, P frames and
B frames. I frames are self contained picture frames which consist of the full picture, no prediction or
references to other frames are used in order to construct this frame, they are sometimes also referred to
as key frames. P frames are predictive frames and are based on earlier pictures from I or P frames [55].

CHAPTER 3. USED TOOLS AND CODECS 18

B frames on the other hand are bidirectional predictive frames which make use of earlier and/or later
frames [56], making it the most compressed frame size. Together these frames are collected in a sequence
called a group of pictures. Motion estimation only happens within a GOP. The amount of frames within
a GOP is called the GOP size. A video stream itself consists of a multitude of GOPs. Only the main
profiles and above make use of B frames, the performance needed to execute the prediction algorithms
used within B frames cannot be met by low-end playback devices [54].

3.2.2 VP8

VP8 is an open source and royalty free codec owned by Google6, developed by On2 Technologies as a
successor to VP7. On August 5 of 2009, Alphabet (Google’s mother company) acquired On2 technologies.
As of 2010, Google has declared the codec to be royalty free and has released the specification under the
Creative Commons Attribution 3.0 license [57].

VP8 is very similar to the way H264 works, it was introduced and made royalty free in order to challenge
the non-free H264 codec [58]. Just as H264, VP8 makes use of inter framing I and P frames to compress
the file size, yet it does not utilise B frames. It was found that it is very rare for more than three reference
frames to provide significant quality benefit [59]. Instead, VP8 makes use of a golden reference frame
and/or an alternate reference frame [60]. The idea behind the GRF and ARF is to store a frame from
an arbitrary point in the past to be used for inter frame predictions [60, 61], similar to the way B frames
make use of past (or future) frames that are not adjacent to the current frame in the frame sequence.

When an H264 encoded and VP8 encoded video stream with the same target bitrate and aspect ra-
tios were compared directly, the difference seen by the naked eye was so small it can be considered trivial
[62].

3.2.3 AAC

Advanced Audio Coding is a proprietary audio codec designed in 1997. No license or payment is required
in order to distribute content in AAC format. AAC codec developers on the other hand are required to
pay a patent license [63]. The goal of the codec was to become the successor of MP3 and achieve a better
quality at the same bit rate [64]. The AAC codec has been standardized by ISO and IEC in 2006 [65].
At the time of writing, AAC is the most widely supported audio codec and is being used as a standard
in many devices and streaming purposes (e.g., Youtube videos [66]).

6http://www.webmproject.org/

Chapter 4

Bendwit

Bendwit1 is a service platform that allows users to prepare media content for adaptive streaming. Access
is provided through a web platform, a REST API and a programming API. The platform is built in such
a way that users with minimal knowledge (henceforth denoted with the term novice users) are able to
produce content for adaptive streaming via a minimalistic and easy to use interface. At the same time,
Bendwit allows for a large degree of freedom by providing more advanced users (henceforth denoted
with the term expert users) with the possibility of fine tuning how media content should be represented
(resolution, codec used, bit rate, framerate, . . .).
Section 4.1 will summarize Bendwit its high-level system design and how communication takes place
between the different logical components it encompasses. Sections 4.2, 4.3, 4.4, 4.5, 4.6 will then describe
the different building blocks of Bendwit in detail.

4.1 Bendwit workflow

Instead of building a monolithic system that contains all logic, API’s and frontend matters, it was decided
early on that using a layered design would result in a more flexible system that could serve more than one
purpose. Each layer is exposed through a well-designed interface which allows for separation of concerns,
facilitates interoperability and allows for future changes to the code itself. Figure 4.1 visualises the layered
architecture of Bendwit. The core functionality of Bendwit resides within the CLI tool (depicted at the
very bottom in the backend layer). Users make requests via the frontend layer which communicates with
the backend layer. Novice users are able to issue requests via the website interface. Expert users on
the other hand also have the choice to communicate with the Bendwit platform through the REST API
directly or an abstraction of it called the developer API. In order to control the flow of requests in the
backend, a job scheduler handles all incoming requests and queues them for processing.
Figure 4.2 depicts the communication onion model of Bendwit. User requests propagate from the outer
layer inwards to the center and communication only takes place between subsequent layers.

1The name Bendwit is a phonetic twist on the word “bandwidth”. It consists of the verb “to bend” and the noun “wit”.
This all refers to the smart way HAS players handle the bandwidth that is available to them, thus bending the media in
such a flexible way that ensures a continuous playback.

19

CHAPTER 4. BENDWIT 20

Figure 4.1: Bendwit multi layered workflow

Figure 4.2: Bendwit onion model of the Bendwit communication layers

CHAPTER 4. BENDWIT 21

4.2 Command Line Tool

The command line interface tool is the core of the Bendwit platform, encapsulating logic pertaining to the
preparation of media content for adaptive streaming. It handles media transcoding, media probing and
HAS media preparation. As a result of the multi layered software approach, the CLI tool was developed
as a standalone tool for Linux based operating systems. If so desired, it can hence be used by expert
users directly, this way bypassing the interfacing sugar that is added by higher layers in the Bendwit
software architecture.

4.2.1 Choice of Programming Language

Bendwit CLI was designed in the programming language Python version 32. Not only does Python offer
the object-oriented paradigm needed for the software architecture (explained in Section 4.2.2), it also
comes with a wide variety of prebuilt libraries like:

• json Used for parsing user configuration files and outputting probe data

• subprocess Used for spawning and operating the tools described in Chapter 3

• logging Built-in logging system

Python also simplifies avoiding bad coding practices like large switch/if structures by providing developers
with the functional and lambda programming paradigms. These allow flexible systems which do not
require maintenance when new features are added (see Section 4.2.2 “Parameter Manager” for more
information).

4.2.2 Inner workings

The purpose of the tool is to prepare media for adaptive streaming. This can be described on a high level
as follows:

1. Take a media file as input

2. Transcode this input to different representations3

3. Splice all the transcoded files in media segments of x seconds4

4. Create an adaptive streaming manifest file holding the necessary streaming metadata about the
generated media segments

This process is possible with the use of the tools described in Chapter 3. Transcoding is done with FFm-
peg, DASH content is produced with MP4Box and HLS content is also produced with FFmpeg. Probing
the input media file for information is done with FFprobe.

The CLI tool is made in such a way that it prepares exactly one media artifact for adaptive stream-
ing each time it is run. A user provides a configuration file for the run at initialisation that contains all
the necessary information (see Section 4.2.3 for more details). Because multiple adaptations of the input
media are allowed, the tool also provides an error checking system that outputs possible warnings that
could occur: upscaling the resolution which causes artifacts like blur, the use of multiple aspect ratios
which will cause the instantiation of multiple DASH adaptation sets, conflicting settings, . . . As a result, a
software architecture was needed that could provide such feedback information based on the input media
probe and the user specified configuration (see “Software architecture” for more details).

2https://www.python.org/
3Representations are alternative versions of the media input artifact. For example a different bitrate, different resolution,

. . .
4DASH and HLS typically use segments with fixed durations between 1 and 10 seconds of duration

CHAPTER 4. BENDWIT 22

4.2.3 Configuration File

At initialisation a JSON formatted configuration file is specified with the --config <filename> op-

tion. In this file the user must specify the required source filename and output type keys. At the

time of writing the tool supports 3 output types: dash , hls and probe . Without specifying the

output directory key, the output will be produced in the directory the tool is run. When dash or

hls are selected as output type, the tool also requires the intermediate files key to be supplied.
This key contains a dictionary of codec types and a list of codec options for each desired media repre-
sentation (i.e., intermediate file). Listing 4.1 shows a DASH preparation example, Listing 4.2 shows a
probe request example. The possible keys for intermediate files are identified by the CLI tool its
present configuration classes (see “Software Architecture”, “Parameter Manager” and Section 4.2.4 for
more information)

1 {

2 "source_filename" : "input_file.mkv",

3 "output_type" : "dash",

4 "output_directory" : "demo/",

5 "segment_length" : 3000,

6 "vacuum" : true,

7 "intermediate_files" : {

8 "h264" : [

9 {

10 "media_height" : 360,

11 "framerate" : 24,

12 "kilobitrate" : 500,

13 "h264_profile" : "baseline",

14 "level" : 3.1,

15 "source_index" : 0

16 },

17 {

18 "media_height" : 360,

19 "framerate" : 24,

20 "kilobitrate" : 800,

21 "h264_profile" : "baseline",

22 "level" : 3.1,

23 "source_index" : 0

24 },

25 {

26 "media_height" : 720,

27 "framerate" : 24,

28 "kilobitrate" : 1500,

29 "h264_profile" : "baseline",

30 "level" : 3.1,

31 "source_index" : 0

32 },

33 {

34 "media_height" : 720,

35 "framerate" : 24,

36 "kilobitrate" : 2400,

37 "h264_profile" : "baseline",

38 "level" : 3.1,

39 "source_index" : 0

40 },

41 {

42 "media_height" : 1080,

43 "framerate" : 24,

44 "kilobitrate" : 3000,

45 "h264_profile" : "baseline",

CHAPTER 4. BENDWIT 23

46 "level" : 3.1,

47 "source_index" : 0

48 },

49 {

50 "media_height" : 1080,

51 "framerate" : 24,

52 "kilobitrate" : 4000,

53 "h264_profile" : "baseline",

54 "level" : 3.1,

55 "source_index" : 0

56 },

57 {

58 "media_height" : 1080,

59 "framerate" : 24,

60 "kilobitrate" : 6000,

61 "h264_profile" : "baseline",

62 "level" : 3.1,

63 "source_index" : 0

64 }

65],

66

67 "aac" : [

68 {

69 "kilobitrate" : 56,

70 "channel_layout" : "stereo",

71 "source_index" : 1

72 },

73 {

74 "kilobitrate" : 36,

75 "channel_layout" : "stereo",

76 "source_index" : 1

77 }

78]

79 }

80 }

Listing 4.1: DASH with H264 and AAC codec configuration file example

1 {

2 "source_filename" : "input_file.mkv",

3 "output_type" : "probe",

4 "output_directory" : "demo/"

5 }

Listing 4.2: Probe configuration file example

Software Architecture

The ability to supply the user with a plethora of configuration options ensues from the modular archi-
tecture used by the CLI tool. Every media file consists of “streams”, which can be of the type video,
audio or subtitles. Every stream is encoded with a certain codec. By creating information structures for
every stream, we can compare them in order to discover conflicts (see “Conflict Management” for more
information) and create encode commands for FFmpeg.

During development an object-oriented approach was used to design a class hierarchy that represents
these configuration information structures. Figure 4.3 shows the class diagram.
There are in total three basic configuration types, which represent the three possible stream types:
BasicVideoConfig , BasicAudioConfig and BasicSubtitleConfig .

CHAPTER 4. BENDWIT 24

The basic configuration classes serve the purpose of being expanded into more specific classes which rep-
resent codecs: H264VideoConfig , Vp8VideoConfig , AacAudioConfig , VttSubtitleConfig , . . . the

basic configuration classes are also used as reference classes for conflict management (see “Conflict
Management” for more information) .

Internally the configuration objects belong to either of the two following categories: input configura-
tion objects or output configuration objects. When a configuration object has the reference parameter
set, it belongs to the output configuration objects. Output configuration objects are created from what
the user specifies in the intermediate files key inside the configuration file (see “Parameter Man-

ager” for more information). Without the reference parameter set, the object serves the purpose of
an input configuration object (see “Conflict Management” for more information). Depending on the type
the configuration object belongs to, it will have following responsibilities:

Input configuration objects Output configuration objects
Manage stream type (and codec) spe-
cific data

3 3

Produce correct FFmpeg encode com-
mands with the given parameters

7 3

Find possible conflicts between refer-
ence object and its internal parameters

7 3

Encode command creation

Creating the FFmpeg encode command is done with the get encode command() method that every

configuration class contains. The output configuration object will create an FFmpeg valid command
string for the codec type it represents. For the first entry of the H264 example given in Listing 4.1, the
configuration class would produce following the FFmpeg encoding commands (See Section 4.2.4 for more
information):

1 ffmpeg -y -i input_file.mkv -c:v libx264 -vf scale=w=-2:h=360:

force_original_aspect_ratio=decrease -pix_fmt yuv420p -r 24 -profile:v baseline -

x264opts keyint=72:min-keyint=72:scenecut=-1 -an -sn -dn -preset ultrafast -

map_chapters -1 -pass 1 -passlogfile demo/pass_log_video_transcode_0.mp4 -b:v 500k

-maxrate 500k -bufsize 1000k -f mp4 /dev/null

2

3 ffmpeg -y -i input_file.mkv -c:v libx264 -vf scale=w=-2:h=360:

force_original_aspect_ratio=decrease -pix_fmt yuv420p -r 24 -profile:v baseline -

x264opts keyint=72:min-keyint=72:scenecut=-1 -an -sn -dn -preset ultrafast -

map_chapters -1 -pass 2 -passlogfile demo/pass_log_video_transcode_0.mp4 -b:v 500k

-maxrate 500k -bufsize 1000k demo/video_transcode_0.mp4

The data used inside the encode command originates from the parameters supplied to the configuration
object at creation. Every configuration object has a serializer method get debug string() , which can

be used internally for debugging purposes. The first entry of the H264 example given in Listing 4.1 would
return the following string:

1 H264 Video configuration (Encoding options present) | Index 0 | Width Nonepx | Height

360px | Frame rate 24fps | Numerical frame rate 24.0fps | Bit rate 500kbps | H264

Profile baseline | H264 Level None | Display ratio None | Codec name 'libx264' |

Filename 'FilenameNotSet.mp4'}

Conflict Management

Configuration objects have the option to supply a reference parameter. The value of that parameter

is an input configuration object. By supplying a reference object, the output configuration object
has the ability to check its own internal data against the reference, this is called intra-conflict checking.

CHAPTER 4. BENDWIT 25

F
ig
u
re

4
.3
:

C
la

ss
d
ia

g
ra

m
o
f

th
e

co
n
fi
g
u
ra

ti
o
n

cl
a
ss

a
rc

h
it

ec
tu

re

CHAPTER 4. BENDWIT 26

This is a useful feature that enables checking encode parameters specified by the user against the source
artifact. Next to intra checking, the system also provides a feature called inter-conflict checking. All
output configuration objects are gathered in an EncodeConfig object. The purpose of this class is to

globally check for conflicts between output configuration objects.

Encoding requires a lot of processing power. By providing the user with an early feedback mecha-
nism concerning possible mistakes, time and processing cycles are saved. At initialisation the CLI tool
probes the source artifact with FFprobe. All source artifact streams get dissected and receive their
own respective input configuration class. At the time of writing, only the basic configuration classes
(BasicVideoConfig , BasicAudioConfig or BasicSubtitleConfig) are used for this purpose. These

created objects will serve as reference for the output configuration classes specified by the user in the
configuration file supplied at initialisation. As described in the “Software Architecture” Section, input
configuration objects only have 1 purpose: manage stream type specific data (e.g., BasicVideoConfig

manages width, height, aspect ratio and frame rate).

Internally, every configuration object and the EncodeConfig object have a reference set to a ConflictManager

object, whose purpose is to collect conflicts. The system differentiates between two types of conflicts:
warnings and errors. Warnings are simple conflicts between user supplied parameters and source artifact
probed data, which could cause unwanted results in the end product (e.g., the source artifact contains
a resolution of 1920 × 1080 pixels, but the user supplies a configuration that requires a resolution of
3840×2160; this could potentially cause video artifacts like blur in the transcoded output which could be
unwanted). Errors on the other hand are conflicts which are of such severity that they’ll cause FFmpeg
to halt encoding (e.g., The FFmpeg X264 library that encodes and decodes H264 video streams can only
handle resolutions which are even during encoding; a requested output of resolution 1921 × 1080 would
halt the encoding process whilst 1920× 1080 would not).

Garbage Cleaning

Every output configuration object is responsible for knowing how to encode the source artifact with the
user supplied parameters in the configuration file. Since the configuration classes know exactly which files
they will create, they pass their garbage files (logs, pass files, probe data, . . .) to the garbage cleaner.
When the vacuum option is set to True in the configuration file (see for example Listing 4.1), the
system will automatically clean all flagged files.

Internally, every configuration object has a garbage cleaner parameter whose value is a GarbageCleaner

object. The configuration classes also include a add garbage(level, file) method which can be

called to flag a file as being garbage. The system currently supports 3 garbage levels: intermediate media

for the intermediate media files produced during transcoding, logs for multi-pass encode logs (see Sec-

tion 4.2.4 for more information) and OTHER for everything that does not fall within the previous garbage
levels.

Parameter Manager

The ParameterManager class forms the bridge between the configuration classes and the user configura-

tion input. Every configuration class knows best what parameters it needs in order to fulfill its duty within
the hierarchy. All configuration classes contain a static construct configuration parameters(parameter manager)

method, which tells the ParameterManager object what to look for inside the user specified configura-

tion file. The configuration class specifies 3 kinds of information needed in the ParameterManager :

1. The key to look for within the intermediate files configuration dictionary, we will call this

the configuration class key (e.g. h264 will map the user specified data within that key to the

H264VideoConfig configuration class)

2. What keys to look for within the the user supplied configuration class key, we will call these the
parameter keys (e.g. media height , h264 level , h264 profile are parameter keys within a

CHAPTER 4. BENDWIT 27

h264 configuration)

• A default fallback value also gets set in case the user specified configuration did not contain
the specified parameter key

3. A method reference which will create an instance of the configuration class, we will call this the
creator method

At initialisation, all configuration classes register themselves with a ParameterManager object. This

object will then contain all configuration class keys with their respective parameter keys to look for within
the intermediate files dictionary of the user specified configuration file. When a configuration class
key gets found, the system maps all user specified parameter keys against the parameter keys it expects
and builds a dictionary from these. That dictionary gets passed to the creator method5 along with the
reference configuration object, garbage cleaner object and conflict manager object. The creator method
will then create the output configuration object.

4.2.4 Currently supported codecs

Bendwit CLI supports two video codecs, one audio codec and one subtitle codec at the time of writing.
Adding a new codec is as simple as adding a new extension to the configuration hierarchy and registering it
with the other configuration classes. Adding or updating functionality becomes easy due to this modular
approach and makes it possible to let Bendwit work with any codec imaginable. If, for example, a future
FFmpeg update were to add a new codec, one would only need to add the configuration class and Bendwit
CLI would handle the rest. The mechanism was built in such a fashion that it is future proof.

H264

The H264 codec is supported in the H264VideoConfig configuration class; which accepts the following

settings via the user configuration file (see Section 3.2.1 for more information about H264):
Parameter Value type Description

source index Integer Video stream index from input media artifact which will be
transcoded with the given parameters

media height Integer Height expressed in pixels (if media width is not supplied, it will
automatically scale based on the aspect ratio)

media width Integer Width expressed in pixels (if media height is not supplied, it will

automatically scale based on the aspect ratio)

framerate String Framerate in frames per second or in fraction format(e.g. 24 ,

24000/1000

kilobitrate Integer Bitrate in kilobit per second

aspectratio String Aspect ratio expressed as width:height (e.g. 16:9)

h264 profile String Currently supported profiles: baseline, main, high, high10, high422
and high444

h264 level String Currently supported levels: 1, 1b, 1.1, 1.2, 1.3, 2, 2.1, 2.2, 3, 3.1,
3.2, 4, 4.1, 4.2, 5, 5.1, 5.2

GOP plays an important role in preparing media for adaptive streaming. Every segment is required
to start with an I frame, the H264VideoConfig class will decide on a GOP size based on the given seg-

ment duration and the framerate, this way, every segment boundary starts on an I frame. The segment
duration is expressed in milliseconds internally to avoid rounding errors with floating point calculation.
The GOP size gets calculated as follows:

GOP =
FPS× segment length

1000

Problems arise whenever the calculated GOP size is not an integer. To fix this, the calculated floating
point GOP size gets rounded down to an integer and the segment duration in milliseconds gets recalculated

5The system makes use of **var syntax within Python to map dictionary keys to method header parameters.

CHAPTER 4. BENDWIT 28

with the following formula:

segment length =
round(GOP)

FPS
× 1000

It it recommended that every intermediate file configuration has the same framerate, this way if GOP
calculation problems arise, they will all be recalculated to the same length. DASH allows video segments
of different lengths, Bendwit on the other hand opts for segments of the same length to support as many
client players as possible. In order to achieve quality switching between all the different transcoded
versions, they would need to have the same segment lengths. The conflict manager will throw warnings
about this to prevent such results.

In order to enforce a certain bitrate onto the requested intermediate files, the H264VideoConfig opts
for multi-pass encoding, more specifically two-pass encoding. The first pass will analyze the input media
file. The second pass will perform the transcode with the analyzed data in order to achieve the high-
est quality possible with the given parameters. A maximum bitrate will be enforced by supplying the
kilobitrate key, otherwise the bitrate of the media input file will be used.

AAC

The AAC audio codec is supported in the AacAudioConfig configuration class, which accepts the fol-

lowing settings via the user configuration file:
Parameter Value type Description

source index Integer Audio stream index from input media artifact which will be
transcoded with the given parameters

channel layout String Currently supported audio layouts: mono, stereo/2.1, 5.1 and 7.1

kilobitrate Integer Bitrate in kilobit per second

WebVTT

The WebVTT subtitle codec is supported in the VttSubtitleConfig configuration class; which accepts

the following settings via the user configuration file:
Parameter Value type Description

source index Integer Subtitle stream index from input media artifact which will be
transcoded with the given parameters

Supplying a subtitle stream index in the user configuration file is enough for Bendwit to convert it to
WebVTT format and include the resulting WebVTT subtitles in the output.

4.2.5 Encountered problems

During development of Bendwit CLI, certain problems arose that received a bug fix or a workaround.

Incorrect Durations and Segmentation Warnings

Bendwit CLI extracts video, audio and subtitle streams into individual intermediate media files using
FFmpeg. Video and audio are extracted into containers with exactly one stream, subtitles get extracted
into plain text files. During DASH segmentation, Mp4box would throw a mix of the following two warn-
ings:
[iso file] Unknown box type gmhd and [iso file] Unknown box type gmin . These two warn-

ings did not clearly indicate where a problem had occurred, neither did searching for the warnings point
to a solution. Box types gmhd and gmin indicate incorrectly formatted subtitles, which had nothing

to do with the test cases. Another indicator that something went wrong, were the incorrect durations
which Mp4box put into the manifest file.

Probing the video and audio intermediate media files showed that the container always carried 2 streams:

CHAPTER 4. BENDWIT 29

the selected stream for transcoding and a garbage stream. Adding the -dn option6 to ignore data
streams did not ignore the garbage stream. A solution was found on the Ffmpeg mailing list7 and a Su-
peruser topic8. By supplying the option -map chapters -1 , Ffmpeg will ignore chapter data streams,

resulting in clean containers with only the selected stream. Without the chapter data stream present,
Mp4Box would not choke on segmenting video files and correctly put the duration length into the manifest
file.

DASH Playback Freezes

During development different media files were used to test the transcoding and segmenting ability of
Bendwit CLI. A test setup consisted of the segmented media files, a DASH manifest file and a DASH
player. All setups showed the exact same problem within the Dash.js player version 2.39. When quickly
seeking through the video and changing the playback time just before the player had a chance to buffer
the previous content, the player would freeze indefinitely. This mostly seemed to happen around the be-
ginning area of the video seekbar. When the Bitmovin HTML 5 player version 710 was used, this problem
could not be reproduced. This happened in the same time frame as the previously mentioned problem,
indicating that the incorrect durations in the manifest file could be a possible trigger to this problem.
Another possibility was incorrect GOP transcoding of the intermediate files, leading to misplaced “I”
frames, causing the player to choke on these segments.

A small script was developed to check segmented video files for incorrectly placed “I” frames:

1. Concatenate all segments in correct order into one media file

2. Analyze all frames of this monolithic media file with FFprobe and output findings to a CSV file

3. Count all “I” frames and check for incorrect positions (an “I” frame should only occur at the
beginning of a segment)

After analyzing multiple setups, no incorrectly transcoded or segmented media files were found.

A new release of Dash.js did not yield the same freezing results. A multitude of bugfixes were intro-
duced concerning buffering and video seeking11 between version 2.3 and 2.5. Leading to the belief the
problem was never situated with Bendwit CLI. Listings 4.3 and 4.4 show examples of a manifest with
subtitles embedded as segments versus a manifest with subtitles embedded as a TTML XML file.

WebVTT Subtitle Support in MP4Box

When segmenting for DASH, MP4Box only supports TTML encoded subtitles[67] or subtitles as a stream
inside a container. FFmpeg can extract and convert a multitude of different subtitle encodings, including:
ass, vtt, srt, . . . but unfortunately not TTML. At the time of writing, an enhancement ticket asking for
TTML support has been opened on the FFmpeg tracker12.

As a temporary workaround, Bendwit CLI provides MP4Box with a subtitle stream encoded in a con-
tainer: MP4Box -add <subtitle file> <existing intermediate file>

By supplying MP4Box with optional :OPT or #OPT suffixes during DASHing, we can ensure that the
media file gets segmented in such a way that it does not contain multiplexed streams:
<existing intermediate file>#video extracts the video stream (#audio for audio) and

<existing intermediate file>#trackID=2 extracts that second stream which is the added subtitle

stream. This workaround does involve some overhead: a 1KB WebVTT subtitle file for a 30 second me-
dia file when segmented into segments of 3 seconds, required a total of 5,4KB. Listings 4.3 and 4.4 show

6https://trac.ffmpeg.org/ticket/647
7http://ffmpeg.org/pipermail/ffmpeg-user/2012-May/006654.html
8https://superuser.com/questions/441361/strip-metadata-from-all-formats-with-ffmpeg
9https://github.com/Dash-Industry-Forum/dash.js/wiki

10https://bitmovin.com/html5-player/
11https://github.com/Dash-Industry-Forum/dash.js/releases
12https://trac.ffmpeg.org/ticket/4859

CHAPTER 4. BENDWIT 30

examples of manifests with subtitles embedded as MP4 segments and subtitles embedded as a TTML
XML file.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <MPD xmlns="urn:mpeg:dash:schema:mpd:2011" minBufferTime="PT1.500S" type="static"

mediaPresentationDuration="PT0H0M32.973S" maxSegmentDuration="PT0H0M3.000S"

profiles="urn:mpeg:dash:profile:isoff-live:2011,http://dashif.org/guidelines/

dash264">

3 <Period duration="PT0H0M32.973S">

4 <!-- Subtitle adaptation sets-->

5 <AdaptationSet segmentAlignment="true" lang="eng">

6 <SegmentTemplate timescale="1000" media="$RepresentationID$/segment_$Number$.m4s
" startNumber="1" duration="3000" initialization="$RepresentationID$/segment_.mp4"
/>

7 <Representation id="10" mimeType="application/mp4" codecs="wvtt" startWithSAP="1

" bandwidth="1322" />

8 </AdaptationSet>

9 </Period>

10 </MPD>

Listing 4.3: DASH manifest file with subtitles embedded as MP4 segments

1 <?xml version="1.0" encoding="UTF-8"?>

2 <MPD xmlns="urn:mpeg:dash:schema:mpd:2011" minBufferTime="PT1.500S" type="static"

mediaPresentationDuration="PT0H0M32.973S" maxSegmentDuration="PT0H0M3.000S"

profiles="urn:mpeg:dash:profile:isoff-live:2011,http://dashif.org/guidelines/

dash264">

3 <Period duration="PT0H0M32.973S">

4 <!-- Subtitle adaptation sets-->

5 <AdaptationSet segmentAlignment="true" lang="eng">

6 <Representation id="10" bandwidth="256" mimeType="application/ttml+xml">

7 <BaseURL>eng.ttml</BaseURL>

8 </Representation>

9 </AdaptationSet>

10 </Period>

11 </MPD>

Listing 4.4: DASH manifest file with subtitles embedded as a TTML XML file

FFmpeg segmenter

The segmenting and manifest creation for HLS is done with FFmpeg as MP4Box only supports MPEG-
DASH. FFmpeg has the tendency to segment audio and subtitle files however it seems fit. Video streams
are neatly segmented as told and showcase no problems when examined with the tool explained in the
Section “DASH Playback Freezes”. Audio gets segmented almost perfectly and subtitle segments show
big deviations. If for example a 10 second segment size is chosen, video segments will be 10 seconds long
each, audio segments will vary between 10 tot 10,02 seconds each and subtitles will vary between 3 to 15
seconds. These different segment lengths in audio and subtitles make HLS playback in browsers showcase
glitchy behaviour: new video segments will only be downloaded once the longest current segment is fully
processed, thus showing a black screen for a certain amount of time. The current implementation has no
workaround yet for this bug as this bug was discovered too late in the development cycle. An idea for a
workaround however, is available. Instead of making use of the FFmpeg -f segment format, the CLI

tool can generate a list of commands which extracts pieces of media by making use of the FFmpeg -ss

seeking system13, which allows for frame-accurate extraction. By then manually creating the manifest
file the deviation problem will be solved. This however requires a system that analyzes video, audio and
subtitle streams, creates extraction commands for these streams and finally creates a manifest without
the help of external tools like MP4Box or FFmpeg.

13https://trac.ffmpeg.org/wiki/Seeking

CHAPTER 4. BENDWIT 31

4.3 Job Scheduler

The job scheduler acts as a controller between the incoming user requests from the REST API and the
Bendwit CLI tool. As explained in Section 4.2, the CLI tool is built as a standalone tool. As such, it has
no notion about the world around it. The job scheduler has the following responsibilities:

• Queue incoming requests

• Download necessary media files locally such that the CLI tool can access them

• Prepare output directories

• Notify users about the completion of their request via an optional webhook

4.3.1 Choice of Programming Language

The job scheduler was designed with Python version 314. This decision is motivated by the required
functionality described in Section 4.3.2: JSON configuration files, concurrency, Linux inotify support15,
directory management and the ability to easily use HTTP GET and POST. Python readily provides this
functionality via these respective libraries:

• json

• threading

• watchdog 16

• os and shutil

• urllib3 HTTP communication

4.3.2 Inner Workings

The job scheduler is a piece of software which runs 24/7 and watches a certain job directory for file change
events. Jobs are represented as JSON configuration files. Upon detecting such events, the job scheduler
checks to see if the file that triggered the event is a valid JSON file with the following keys:

• job The type of job, current possibilities: probe or has transcode

• media id A media identification name

• config file A Bendwit CLI configuration filename

• (Optional) external url An HTTP media URL

The job scheduler itself contains multiple queues which are serviced by a multitude of worker threads.
Depending on the user settings, supplied at the beginning of the job scheduler code, the job scheduler
spawns multiple ProbeWorker , HasTranscodeWorker and DownloadWorker threads and exactly one

SortWorker and DogWatchEventHandler thread. Each type of worker is linked to a queue, the system

currently consist of four queues: sort queue, download queue, probe queue and has transcode queue. Each
queue works in a FIFO fashion, but other sorting algorithms can be applied to the queue items. For ex-
ample, as part of future work, a priority sorted job scheduler could be implemented that gives precedence
to high priority jobs (e.g., those jobs initiated by premium users).

Every newly added job gets added to the sort queue. It is the sort worker’s responsibility to figure
out where to store the job. If the job specified an external url key, it will always be added to the

download queue first. If no external url key is specified, the system assumes that the involved media

is already locally available and can be found with the media id identification; as such, it will sort the

14https://www.python.org/
15http://man7.org/linux/man-pages/man7/inotify.7.html
16https://pypi.python.org/pypi/watchdog

CHAPTER 4. BENDWIT 32

job according to the job key into either the probe or the has transcode queue.

The ProbeWorker and HasTranscodeWorker threads spawn dedicated Bendwit CLI instances with

the specified config file value as configuration file. Once these worker threads finish their jobs, they

will clean up the job configuration and Bendwit CLI configuration files. If the user request specified a
webhook (see Section 4.4 for more information), the system will send an HTTP POST to the specified

webhook URL upon completing the job, signaling that the job is finished with a payload specific to the
user request. Figure 4.4 depicts the flow of a job from start to end.

Figure 4.4: Bendwit job scheduler

CHAPTER 4. BENDWIT 33

4.4 REST API

All user requests are handled by the REST API which is publicly available via the link api.bendwit.net
using representational state transfer sevices. The REST API has the following responsibilities:

• Create jobs for the job scheduler based on incoming user requests

• Create Bendwit CLI configs that accompany the job request

• Manage a database which stores information about media probes, media transcodes and manifests

4.4.1 Choice of Programming Language

The REST API and website (see Section 4.5 for more information) were designed as one part using
the Python17 web-microframework Flask version 0.12.218. Flask is a web-microframework based on
Werkzeug19 and Jinja 220 and has a wide range of third-party plugins which simplify web development.
The choice to merge the REST API and website under one codebase stems from the Flask architecture.
It is possible to create multiple web server gateway interface entry points to the same codebase with
Werkzeug. This enables us to create a REST API and website which use the same underlying code (e.g.,
models, configurations, Job Scheduler controller, . . .) whilst providing different functionality.

In order to provide the REST API’s functionality, the following flask plugins were used:

• flask restful version 0.3.521

• flask sqlalchemy version 2.122, which makes use of:

– sqlalchemy version 1.2.0b223

• jsonschema draft 424

flask restful provides an abstraction on top of Flask which makes it easier to develop REST func-
tionality (e.g., auto parsing output formats XML, JSON, flat file, . . .). The database model is defined in
Python classes, which are mapped to database tables via the object-relational mapper of sqlalchemy ,

enabling easy modification and cross-database SQL functionality (e.g., development can take place with
an SQLite database whilst in production a MySQL25, PostgreSQL26, . . . interface can be used). Finally
jsonschema provides a Python base way of checking JSON formatted strings, making it possible to syn-
tactically check REST API request method bodies, which are JSON formatted, against a schema (see
Section 4.4.3 for more information).

4.4.2 NGINX

NGINX 27 is an asynchronous event driven HTTP server with a small memory footprint, capable of
handling many connections at once. REST API requests and website pages are not served directly from
the Flask instance. Instead a deployment option called uWSGI 28 is used which communicates with the
Flask WSGI. Whenever a client connects to the REST API or website, NGINX handles the connection
logic and optional load balancing, passing along the request to the uWSGI instance via a unix socket;

17https://www.python.org/
18http://flask.pocoo.org/
19http://werkzeug.pocoo.org/
20http://jinja.pocoo.org/
21https://flask-restful.readthedocs.io
22http://flask-sqlalchemy.pocoo.org/2.1/
23https://www.sqlalchemy.org/
24http://json-schema.org/
25https://www.mysql.com/
26https://www.postgresql.org/
27https://www.nginx.com/
28https://uwsgi-docs.readthedocs.io

CHAPTER 4. BENDWIT 34

the uWSGI instance on its turn communicates with the Flask WSGI instance. The current information
flow when a user makes an HTTP request looks like this:

Web Client⇔Web Server⇔ Unix Socket⇔ uwsgi⇔ Flask

The reason the web server makes use of NGINX instead of Flask directly, stems from the fact that Flask
was never to be deployed as a web server directly. Flask uses Werkzeug’s development server which as
the name suggests was intended for development purposes and doesn’t handle high load well. NGINX on
the other hand is a dedicated web server software which is capable of handling thousands of simultaneous
connections and scales well.

4.4.3 Inner Workings

Internally, the REST API makes use of a versioning system based on the modular blueprint system of
Flask. Each version is a Flask blueprint which gets added to the Flask instance at initialisation. A
Flask blueprint can be considered as a module which contains functionality and can be added to a Flask
instance. A user differentiates between REST API versions by specifying the desired version in the url
during a request: api.bendwit.net/v<x>/<request> ; which at the time of writing only consists of v1 .

The REST API also requires users to identify themselves with an API key, which can only be cre-
ated via the website interface (see Section 4.5 for more information) and is specified in an HTTP header
with the name bendwit-api-key and the API key as value. The REST API logs all actions which take

place with the key, these can be found on the website interface.

REST API request properties are passed as JSON arguments in the body of the HTTP request and
get validated with a JSON schema. Whenever a POST message body contains faulty or missing prop-
erties, the REST API will return an HTTP 400 status code, indicating a bad request, together with a
JSON object in the respone body containing a list of errors.

A REST API request is always answered with a JSON response object containing information about
the request along with an HTTP status code. Every JSON answer object contains a status property
indicating the status of the request. The combination of the HTTP status code and the JSON response
object status property are enough to uniquely identify every possible REST API answer.

The following table describes the REST API version 1 request URLs and what request method to use.
POST request JSON properties and JSON response objects are described in full detail below the following
table. Listing 4.5 showcases a small REST API interaction example using curl29. In this example the
user requests the last added media artifacts, creates a new media artifact and requests a HAS preparation
on a media artifact using the encodings supplied in the JSON structure.

29https://curl.haxx.se/

CHAPTER 4. BENDWIT 35

URL Request method Description

/probes/<media id>/ GET Retrieve probe data about the specified
media id

/probes/ POST Create a new probe request

/has transcodes/<has id>/ GET Retrieve the manifest location of the given has
transcode id

/has transcodes/ POST Create a new adaptive streaming transcode

/has transcodes/<has id> DELETE Delete the has transcode linked to the given id

/media/ POST Create a new media id for the specified me-
dia artifact

/media/<media id>/ GET Return whether the media id has been probed
and all has transcode ids the system has on
the given media id

/media/<media id>/ DELETE Delete the given media id with all its
has transcodes and probe information

/media/ GET Return the latest 20 added media ids

/media/<page>/ GET Same as /media/ , except the first 〈page〉×20
results are ignored

CHAPTER 4. BENDWIT 36

URL Request method REST API Status HTTP Status

/media/ GET media.{finished | in progress} 200

The JSON response object consists of a list of the last 20 added media objects, each with the
following properties:

• status

• media id

If the media artifact is ready for manipulation, the status will read as finished, else an
in progress status is returned; indicating that the user should wait before requesting a probe
or has transcodes.

/media/<page>/ GET media.{finished | in progress} 200

Returns the same response body as the GET request to /media/ , except the first 〈page〉 × 20
results are ignored. This enables the user to retrieve media artifact ids older than the last 20
ones added.

/media/ POST media.{finished | in progress} 201

POST /media/ accepts as message body a JSON object with the following properties:

• external url

• webhook *30

• Listing A.3 shows the JSON schema for this URL
If the JSON object was formatted correctly, the following JSON response body properties are
returned along with an HTTP 201 status code:

• status

• media id

/media/<media id>/ GET media.{finished | in progress} 200

If media id exists, the following JSON object is returned:
• status

• media id

• contains probe A boolean value representing whether the given media id has been

probed in the past
• has transcodes A list of has transcode ids belonging to the given media id

If the media artifact is ready for manipulation, the status will read as finished, else an
in progress status is returned; indicating that the user should wait before requesting a probe
or has transcodes.

/media/<media id>/ GET media.error 404

If the given media id does not exist, the REST API will return an error status along with an

HTTP 404 status code. The REST API also returns this status in case the given media id

does not belong to the REST API key holder.

/media/<media id>/ DELETE media.deleted 200

The delete request only issues a status property in the JSON response body together with an
HTTP 200 status code indicating that the removal was successful.

/media/<media id>/ DELETE media.error 404

If the given media id does not exist, the REST API will return an error status along with an

HTTP 404 status code. The REST API also returns this status in case the given media id

does not belong to the REST API key holder.

CHAPTER 4. BENDWIT 37

/probes/ POST probe.in progress 201

POST /probes/ accepts as message body a JSON object with the following properties:

• media id or external url

• webhook *
• Listing A.1 shows the JSON schema for this URL

If the JSON object was formatted correctly, the following JSON response body properties are
returned along with an HTTP 201 status code:

• status

• media id (In case an external url property was provided in the POST body JSON
object)

/probes/ POST probe.error 404

If the given media id does not exist, the REST API will return an error status along with an

HTTP 404 status code. The REST API also returns this status in case the given media id

does not belong to the REST API key holder.

/probes/ POST probe.error 400

If the given media id has already been probed in the past, the REST API will return an error
status along with an HTTP 400 status code.

/probes/ POST probe.wait 409

If the given media id is not ready for manipulation yet, the REST API will return a wait status
along with an HTTP 409 status code. It is recommended retry after a minimal waiting period
of 5 seconds.

/probes/<media id>/ GET media.{finished | in progress} 200

If media id exists, the following JSON object is returned:
• status

• payload

If the Bendwit platform has finished probing the media artifact, a finished status will be returned
along with probe data in the payload property; else an in progress status will be returned with
an empty payload.

/probes/<media id>/ GET media.error 404

If the given media id does not exist, the REST API will return an error status along with an

HTTP 404 status code. The REST API also returns this status in case the given media id

does not belong to the REST API key holder.

/probes/<media id>/ GET media.error 400

If the given media id has never received a probing request in the past, the REST API will
return an error status along with the HTTP 400 status code.

CHAPTER 4. BENDWIT 38

/has transcodes/ POST has transcode.in progress 201

POST /has transcodes/ accepts as message body a JSON object with the following properties

• media id or external url

• webhook *

• type : dash or hls

• segment length (in milliseconds)

• encodings

– h264 *
– aac *

– webvtt *
– Encodings accept the parameters explained in Section 4.2.4

• Listing A.2 shows the JSON schema for this URL
If the JSON object was formatted correctly, the following JSON response body properties are
returned along with an HTTP 201 status code:

• status

• media id (In case an external url property was provided in the POST body JSON
object)

• has id

/has transcodes/ POST has transcode.error 404

If the given media id does not exist, the REST API will return an error status along with an

HTTP 404 status code. The REST API also returns this status in case the given media id

does not belong to the REST API key holder.

/has transcodes/ POST has transcode.error 409

If the given media id is not ready for manipulation yet, the REST API will return a wait status
along with an HTTP 409 status code. It is recommended retry after a minimal waiting period
of 5 seconds.

/has transcodes/<has id>/ GET has transcode.{finished | in progress} 200

If has id exists, the following JSON object is returned:
• status

• manifest url

If the Bendwit platform has finished preparing the media artifact for adaptive streaming, a
finished status will be returned along with a manifest url. If the has preparation is still in
progress, an in progress status will be returned with no manifest url property.

/has transcodes/<has id>/ GET has transcode.error 404

If has id exists, the following JSON object is returned:
• status

• manifest url

If the given has id does not exist, the REST API will return an error status along with an
HTTP 404 status code.

1 # Retrieve the last 20 added media artifacts

2 curl -H "bendwit-api-key: 9245ba7120254b54aea03566fc462694" -X GET https://api.bendwit

.net/v1/media/

3

4 # Create a new media artifact with a name

5 curl -H "bendwit-api-key: 9245ba7120254b54aea03566fc462694" -X POST -d '{"external_url
" : "http://www.sample-videos.com/video/mp4/720/big_buck_bunny_720p_1mb.mp4", "

name" : "Big Buck Bunny Example Video"}' https://api.bendwit.net/v1/media/

6

7 # Request a HAS preparation for the given media_id and with the given encodings

8 curl -H "Content-Type: application/json" -H "bendwit-api-key: 9245

ba7120254b54aea03566fc462694" -X POST -d '{"media_id":"
bea6827dcb504f8daff85d3fa9c5061a","type":"dash","segment_length":3000,"encodings

":{"h264":[{"source_index":0,"media_height":360,"media_width":640,"h264_profile":"

CHAPTER 4. BENDWIT 39

baseline","h264_level":"3.1","kilobitrate":500,"framerate":24},{"source_index":0,"

media_height":720,"media_width":1208,"h264_profile":"baseline","h264_level

":"3.1","kilobitrate":2400,"framerate":24},{"source_index":0,"media_height":1080,"

media_width":1920,"h264_profile":"high","h264_level":"4.1","kilobitrate":6000,"

framerate":24}],"aac":[{"source_index":1,"channel_layout":"stereo","kilobitrate

":36},{"source_index":1,"channel_layout":"stereo","kilobitrate":56}]}}' https://

api.bendwit.net/v1/has_transcodes/

Listing 4.5: Direct REST API interaction example using curl

4.5 Website

As mentioned earlier in Section 4.4, the website is consolidated into the same codebase as the REST
API, making it easy to reuse the same database models, use the same user system model and avoid code
duplication. During development, the choice was made to create a simple-hearted website which showed
the basic functionality of the Bendwit platform. As explained in Section 4.2, the Bendwit CLI tool forms
the core of the Bendwit platform, everything added on top is just a (more) convenient way to interface
with the Bendwit CLI tool. That is why the website only showcases the basic functionality: preparing
media for adaptive streaming. If so desired, one can for example create a sugarcoated version which
includes a payment wall for premium members. At the time of writing, the website has the following
responsibilities:

• Manage user accounts

• Manage API keys and their logs

• Provide a user interface with novice abstraction which makes use of the REST API

4.5.1 Choice of Programming Language

Section 4.4.1 already explained the choice of Python and Flask for the REST API and the website. The
website uses the following third-party Flask plugins:

• flask menu 31

• flask user 32

flask menu provides a simple way to define a menu in the view system of Flask so that the menu can
be built dynamically based on the available blueprints, an example of this can be seen on the left in the
Figures 4.5 and 4.6. flask user provides a fully customisable user and authentication system.
The graphical part of the website makes use of:

• Twitter Bootstrap CSS framework v3.3.733

• jQuery javascript framework v3.2.134

The Twitter Bootstrap CSS framework is used to build a responsive and mobile-friendly website lay-
out. DOM manipulation and Bendwit REST API interaction is done with the jQuery javascript frame-
work.

4.5.2 Inner Workings

The website consists out of two parts. Firstly a part which manages the API keys, explained in the “API
Keys” Section and secondly a graphical interface for the REST API that prepares content for adaptive
streaming, explained in the “HAS Preparation” Section.

31http://flask-menu.readthedocs.io
32https://pythonhosted.org/Flask-User/
33http://getbootstrap.com/
34https://jquery.com/

CHAPTER 4. BENDWIT 40

API Keys

The REST API makes use of a key based authentication system. The only way to acquire one of such
keys is via the website interface (see Figure 4.5). A Bendwit user account has the ability to generate keys
and hold up to 5 API keys35 at the same time. When a REST API key gets used, its actions are logged.
The log files of individual API keys are accessible via the website interface (see Figure 4.6). There is
no security system in place at the time of writing to prohibit the use of an API key if someone other
than the owner gets a hold of it; deleting the key and generating a new one is the only option in such a
case.

Figure 4.5: Bendwit website API keys page

35A total of 6 API keys if the website API key is taken into the summation. The website API is only used by the website
interface when interacting withe the REST API, this key is protected against outside use and can not be deleted by the
user.

CHAPTER 4. BENDWIT 41

Figure 4.6: Bendwit website API key logs

Media

The Media page consists of a list of all media artifacts linked to the Bendwit user account that is currently
logged in. The list shows the latest media artifact entries first, as shown in Figure 4.7. On the Media
page, users have to ability to upload new media artifacts by pressing the green New button. They will
then be prompted to supply either an http(s) direct link to a media artifact or pick a media file from
their personal dropbox (depicted in Figure 4.8).

Users also have the option to manage their media artifacts from the Media page. A media artifact
can be deleted by pressing the red Delete button next to a media artifact, the user will need to confirm a
prompt in order to continue. Unprobed media artifacts also show the option to probe them, this is done
by pressing the orange Request probe button, which will request a probe for the respective media artifact
(depicted in Figure 4.9). By pressing the Details button, a details modal will show the user a more
detailed description of the media artifact and all has ids which have this media artifact as input artifact
as shown in Figure 4.10. Whenever a user wants to prepare the media artifact for adaptive streaming,
all they need to do is press the HAS prepare button which will take them to the Has Preparation page
(see Section “HAS Preparation” for more details).

CHAPTER 4. BENDWIT 42

Figure 4.7: Bendwit website Media page

Figure 4.8: Upload media artifact form from the Media page on the Bendwit website

CHAPTER 4. BENDWIT 43

Figure 4.9: Media artifact probe request from the Media page on the Bendwit website

CHAPTER 4. BENDWIT 44

Figure 4.10: Media artifact details form from the Media page on the Bendwit website

HAS Preparation

The website also provides a user interface for scheduling HAS media preparation jobs. The interface is
an abstraction for novice users which can select a premade encoding profile for a certain range of target
devices. The Bendwit platform will try to prepare the requested media according to the specified profile
on a best-effort basis. If due to a corrupt or edge case media artifact the Bendwit CLI tool finds conflicts,
the website interface will force the Bendwit CLI tool to prepare the media anyway on a best-effort basis.

The HAS Preparation page consists of several steps. The first step is the selection of a media arti-
fact from the Media page by pressing the Has prepare button or the upload of a new media artifact
on the HAS Preparation page itself. Once the media artifact is ready for manipulation, the Bendwit
platform will probe the media artifact for basic information, this information is then displayed on the
HAS Preparation page. The last step is to provide the wanted settings for the HAS representation. The
user gets to choose a profile and which streams to include in the end result; the probe information is there
to guide the user in their choices. In the final step, the Bendwit platform transcodes the media artifact
to different qualities, segments these qualities and creates a manifest file according to the selected HAS
type. When the HAS preparation finishes, the user will be shown the manifest location and an example
playback of the HAS content. Figures 4.11, 4.12, 4.13, 4.14 and 4.15 depict the steps from start to finish.

CHAPTER 4. BENDWIT 45

As explained earlier, the user chooses a profile which will be used for transcoding the media artifact.
A profile represents a premade collection of transcoding settings which will be applied to the input media
artifact. The automated setup takes the resolution and aspect ratio into account when applying a profile.
A media artifact will never be upscaled and the aspect ratio will be kept; if for example an input media
artifact has a 9:16 aspect ratio, the automated setup will transcode the media in such a way that it keeps
the vertical aspect ratio, this is done by switching the profile’s height and width properties. A profile
in its essence is just a collection of properties, this means that future additions or changes are perfectly
possible. In the current implementation, the automated setup does not allow the user to make changes
in a profile’s properties as this requires knowledge about encoding settings and is more suited for the
developer API (see Section 4.6). The following profiles are currently implemented:

Desktop Web Browsers - MPEG-DASH profile - 3 second segments
Video quality 1 (H264) Height of 360px (width is automatically scaled accordingly); Framerate

of 30fps; Bitrate of 500kbps; H264 baseline profile level 3.1
Video quality 2 (H264) Height of 360px (width is automatically scaled accordingly); Framerate

of 30fps; Bitrate of 800kbps; H264 baseline profile level 3.1
Video quality 3 (H264) Height of 720px (width is automatically scaled accordingly); Framerate

of 30fps; Bitrate of 2000kbps; H264 baseline profile level 3.1
Video quality 4 (H264) Height of 720px (width is automatically scaled accordingly); Framerate

of 30fps; Bitrate of 3000kbps; H264 baseline profile level 3.1
Video quality 5 (H264) Height of 1080px (width is automatically scaled accordingly); Framerate

of 30fps; Bitrate of 3000kbps; H264 baseline profile level 4.1
Video quality 6 (H264) Height of 1080px (width is automatically scaled accordingly); Framerate

of 30fps; Bitrate of 4000kbps; H264 baseline profile level 4.1
Video quality 7 (H264) Height of 1080px (width is automatically scaled accordingly); Framerate

of 30fps; Bitrate of 6000kbps; H264 baseline profile level 4.1
Audio quality 1 (AAC) Mono channel layout; Bitrate of 36kbps
Audio quality 2 (AAC) Stereo channel layout; Bitrate of 56kbps

Smartphones - MPEG-DASH profile - 3 second segments36

Video quality 1 (H264) Height of 144px (width is automatically scaled accordingly); Framerate
of 12fps; Bitrate of 56kbps; H264 baseline profile level 3.1

Video quality 2 (H264) Height of 360px (width is automatically scaled accordingly); Framerate
of 30fps; Bitrate of 500kbps; H264 baseline profile level 3.1

Video quality 3 (H264) Height of 720px (width is automatically scaled accordingly); Framerate
of 30fps; Bitrate of 2000kbps; H264 baseline profile level 3.1

Audio quality 1 (AAC) Mono channel layout; Bitrate of 36kbps
Audio quality 2 (AAC) Stereo channel layout; Bitrate of 56kbps

Apple Devices - HLS profile - 10 second segments37

Video quality 1 (H264) Height of 270px (width is automatically scaled accordingly); Framerate
of 15fps; Bitrate of 400kbps; H264 baseline profile level 3.0

Video quality 2 (H264) Height of 360px (width is automatically scaled accordingly); Framerate
of 30fps; Bitrate of 800kbps; H264 baseline profile level 3.0

Video quality 3 (H264) Height of 360px (width is automatically scaled accordingly); Framerate
of 30fps; Bitrate of 400kbps; H264 high profile level 4.1

Video quality 4 (H264) Height of 720px (width is automatically scaled accordingly); Framerate
of 30fps; Bitrate of 5000kbps; H264 high profile level 3.1

Video quality 5 (H264) Height of 720px (width is automatically scaled accordingly); Framerate
of 30fps; Bitrate of 4000kbps; H264 high profile level 4.1

Video quality 6 (H264) Height of 1080px (width is automatically scaled accordingly); Framerate
of 30fps; Bitrate of 8600kbps; H264 high profile level 4.1

Audio quality 1 (AAC) Mono channel layout; Bitrate of 36kbps
Audio quality 2 (AAC) Stereo channel layout; Bitrate of 56kbps

36https://developer.android.com/guide/topics/media/media-formats.html
37https://developer.apple.com/library/content/technotes/tn2224/ index.html

CHAPTER 4. BENDWIT 46

Figure 4.11: A user uploads a new media artifact on the HAS Preparation page

Figure 4.12: The Bendwit platform probes a selected media artifact on the HAS Preparation page

CHAPTER 4. BENDWIT 47

Figure 4.13: A user fills in the wanted settings for their HAS content on the HAS Preparation
page

CHAPTER 4. BENDWIT 48

Figure 4.14: The Bendwit platform prepares a selected media artifact for adaptive streaming on
the HAS Preparation page

Figure 4.15: A media artifact has successfully been prepared for adaptive streaming on the HAS
Preparation page

Media hosting

All media content prepared for adaptive streaming by Bendwit is hosted on media.bendwit.net . By
default, modern browsers block script access to domains other than the domain the scripts are hosted
on for security reasons, this is called the same-origin policy [68]. The way DASH and HLS work, client
players such as the Bitmovin HTML 5 player38 and Dash.JS39 fetch media segments via Javascript. This
violates the same-origin policy and thus requires cross-domain access control, this is done by enabling
HTTP headers for cross-origin resource sharing. The media.bendwit.net domain adds the following
HTTP headers in order to make cross-domain resource access possible:

1 Access-Control-Allow-Origin: "*"

2 Access-Control-Expose-Headers: "Server,range"

3 Access-Control-Allow-Methods: "GET, HEAD, OPTIONS"

38https://bitmovin.com/video-player/
39https://github.com/Dash-Industry-Forum/dash.js/wiki

CHAPTER 4. BENDWIT 49

4 Access-Control-Allow-Headers: "origin, range"

The media itself is stored in a directory structure which is known to the Bendwit CLI tool, the job
scheduler and the REST API. Every media artifact is stored in a directory named after the media id of

the media artifact. The artifact itself is always stored under the filename raw media.bendwit in the root

of the media directory. Probe information is also kept in a probe.json file in the root directory. Every

time the user requests a HAS preparation, a new has id gets generated and a new directory with the
same name gets added to the root of the media directory; this folder contains all segments, intermediate
encodings and the manifest for streaming. Figure 4.16 depicts the directory structure.

media.bendwit.net

〈media id〉

raw media.bendwit

probe.json

〈has id〉

manifest.mpd

(Intermediate encodings)

(MPEG-DASH content)

〈has id〉

playlist.m3u8

(HLS content)

〈media id〉
. . .

. . .

Figure 4.16: media.bendwit.net directory structure

4.6 Python Developer API

Another way of interacting with the Bendwit platform is via the Python developer API interface. This
developer API is aimed at expert users wanting to simplify the integration of their programming projects
with the Bendwit platform. At the time of writing the Python developer API provides two ways of inter-
acting with the platform: a functional way and an object-oriented way. The functional way is very similar
to direct communication with the REST API. All Python functional methods raise Python exceptions
corresponding to REST API errors, this enables developers to use the Pythonic “ask forgiveness not
permission” style of coding. The object-oriented implementation makes use of the functional methods
to implement a small system that abstracts some error handling. For example, the developer only has
to request probe information from a media artifact, the object-oriented implementation will handle the
probe request (if needed) and polling after the probe information. Developers only using the functional
methods would need to implement a polling mechanism themselves making use of the functional methods
explained in Section 4.6.1. The object-oriented abstraction is explained in Section 4.6.2.

In order to use the Python developer API, one needs to set the Bendwit API key in order to iden-
tify themselves with the Bendwit REST API; this can be done by manually filling in the REST API key
in the Python developer API source code or by using the set api key(key) method.

CHAPTER 4. BENDWIT 50

4.6.1 Functional methods

The following tables describe the available methods in the Python developer API at the time of writing,
together with their function signature and the Python exceptions they raise. All function names and
parameters were chosen in such a way that the function definitions denote what they do. It should be
noted that all functional methods work in a halting fashion: the method will block for as long as the
REST API call(s) that it encapsulates requires to fulfill the request. If a developer wishes non-blocking
behaviour, they are able to build a threaded shell around these functional methods.

create media artifact(external url, name)

Description Create a new media artifact from the given external url and optional name

parameters. Upon creation the newly generated media id is returned.
Exceptions The following exceptions can be raised:

• MediaArtifactException whenever media creation fails

delete media artifact(media id)

Description Delete an existing media artifact.
Exceptions The following exceptions can be raised:

• MediaArtifactException whenever media deletion fails

get media artifact data(media id)

Description Get media artifact information; this includes whether the media artifact has been
probed before and all its HAS prepared content IDs.

Exceptions The following exceptions can be raised:
• MediaArtifactException if the media id does not exist

get media list(page)

Description Get the last 20 media artifacts added to the API key’s user account. If a page
number is supplied, the first 〈page〉 × 20 results are ignored.

Exceptions The following exceptions can be raised:
• MediaArtifactException if the media list could not be retrieved

create probe request(media id)

Description Create a probe request for the supplied media id .
Exceptions The following exceptions can be raised:

• MediaArtifactException if an invalid media id was supplied

• ProbeWaitException if the media artifact is not ready for manipulation yet

• ProbeDuplicateException if the media artifact has already received a probe

request in the past

get probe data(media id)

Description Retrieve the probe data for the supplied media id . The return value of this method
is the probe payload in Python dictionary format.

Exceptions The following exceptions can be raised:
• MediaArtifactException if an invalid media id was supplied

• ProbeInProgressException if the media artifact probe has not been fully

processed yet by the Bendwit platform
• ProbeDoesNotExistException if the media artifact has never received a

probe request before

CHAPTER 4. BENDWIT 51

create has preparation(media id, has type, segment length, encodings)

Description Create a HAS preparation request for the supplied media id . The return value of

this method is the HAS id for request being made. encodings follows the same

format as the “encodings” property of the REST API HAS preparation request
explained in Section 4.4.3.

Exceptions The following exceptions can be raised:
• MediaArtifactException if an invalid media id was supplied

• HasPreparationWaitException if the media artifact is not ready for HAS
preparation yet

get has manifest(has id)

Description Retrieve the manifest URL for the supplied has id .
Exceptions The following exceptions can be raised:

• HasIdException if an invalid has id was supplied

• HasPreparationInProgressException if the HAS preparation request has

not been fully processed yet

4.6.2 Object-Oriented Abstraction

As briefly mentioned in Section 4.6, the object-oriented abstraction makes use of the functional methods
described in Section 4.6.1. The only difference between the functional methods and the object-oriented
approach, is that the object-oriented approach abstracts some polling work and gathers everything in one
class called Media . Whenever a developer wants to perform a request on a certain media id , they can

create a new Media object and for example directly call methods like get probe() which will return

the media artifact’s probe data. A media object can be created from an already existing media id or

by supplying the Media constructor with an external url (and optional name) parameter which will

create a new media artifact. The following methods are available on Media objects:

• get probe() will retrieve the media artifact probe data. In case the media has not been probed

yet, this will be taken care of automatically. This method returns the probe its payload.

• prepare has(encoding creator object) will send out a HAS preparation request and keep

polling until the Bendwit platform finishes the HAS preparation. The encoding creator object

is explained below. This method returns the manifest URL of the HAS preparation request.

The object-oriented approach also provides an abstraction for the creation of encodings. By creating
a new EncodingCreator object, a developer can create encodings by using methods instead of dictio-

nary/JSON structures. This is done with the following methods incorporated in the EncodingCreator

class:

• add h264 encode()

• add aac encode()

• add webvtt encode()

All these methods accept the same properties as specified in the Section 4.4.3. Instead of supplying a
dictionary, these methods accept parameters, see Listing 4.6 for an example.

1 from developer_api import developer_api_v1 as api

2

3 # Set the API key

4 api.set_api_key("9245ba7120254b54aea03566fc462694")

5

6 # Create a new media artifact object

7 media = api.Media(external_url="http://www.sample-videos.com/video/mp4/720/

big_buck_bunny_720p_1mb.mp4", name="Developer API code - Example test")

8

9 # Request and print probe information

CHAPTER 4. BENDWIT 52

10 print(media.get_probe())

11 # Output: {'video': [{'avg_frame_rate': '25/1', 'height': 720, 'display_aspect_ratio':
'16:9', 'codec_name': 'h264', 'width': 1280, 'index': 0}], 'subtitle': [], 'audio

': [{'sample_rate': '48000', 'codec_name': 'aac', 'index': 1, 'channel_layout':
'5.1', 'channels': 6}]}

12

13 # Create some encoding configurations: 2 video qualities and 1 audio quality

14 encode = api.EncodingCreator(api.EncodingCreator.EncodingType.MPEG_DASH, 3000)

15 encode.add_h264_encode(source_index = 0, framerate=24, h264_profile="baseline",

h264_level="3.1", media_height=360, kilobitrate = 600)

16 encode.add_h264_encode(source_index = 0, framerate=24, h264_profile="baseline",

h264_level="3.1", media_height=720, kilobitrate = 2400)

17 encode.add_aac_encode(source_index = 1, channel_layout = "stereo", kilobitrate = 56)

18

19 # Prepare the media artifact for adaptive streaming and retrieve the manifest URL

20 print(media.prepare_has(encode))

21 # Output: https://media.bendwit.net/8e939ff3a88c47d68596e98a0352d2e8/

c85ca3dc93234cd4a79832f0bf18795c/manifest.mpd

Listing 4.6: Developer API example of object-oriented usage

Chapter 5

Evaluation - Time Study

As a way of evaluating the Bendwit platform, we shall conduct a small time study. The purpose of the
Bendwit platform is to provide an automated way of preparing media content for adaptive streaming,
which is achieved by abstracting the whole process in different layered systems as described in Chapter
4. Because of this approach, some overhead is to be expected when Bendwit is compared to a manual
process of preparing media for adaptive streaming.

The way we will conduct this time study is by setting up four test cases (see Section 5.1 for more
information). A test case consists of a media artifact which will be prepared for adaptive streaming. In
order to find out the Bendwit overhead, we will use a script which sends a HAS preparation request to
the REST API along with a webhook in the request. Two timestamps are logged, one when the request
is sent and a second one when the webhook registers a call from the Bendwit platform. By subtracting
these two timestamps, we get the total time it took the Bendwit platform to fulfill the request. This
time is than compared to a manual preparation setup. The manual test case uses the same commands as
the Bendwit platform does to keep things fair at the encoding step. The media artifact is already locally
available for the Bendwit platform to use, uploading times are not represented in these test cases. A bash
script1 will be used to facilitate the trancoding, segmentation and manifest creation steps; at start and
finish a timestamp will be logged. By subtracting these two timestamps we find the time it takes for the
manual process to prepare the media artifact for adaptive streaming.

5.1 Test Cases

Four test cases will be used to evaluate the Bendwit platform. These test cases will each be run 10
times. For these four test cases, two media artifacts will be used. The first media artifact will be a 30
seconds slice from the Sintel open movie project2, the second media artifact will be the full Big Buck
Bunny project3 which is 9 minutes 56 seconds in length. Both these media artifacts will be prepared
for adaptive streaming in the MPEG-DASH and HLS formats. Both media artifacts contain H264 video
streams. In terms of audio, the Sintel media artifact contains a Vorbis encoded audio stream and the Big
Buck Bunny project contains an AAC encoded audio stream. Both media artifacts are 1080p content
and will be transcoded to the following qualities in all test cases:

• Video stream

1. Low Quality

– Resolution 640× 360

– Framerate of 24fps

– Bitrate of 500kbps

1By using a Bash script, we ensure no extra overhead when invoking the manual FFmpeg transcoding commands.
2https://durian.blender.org/
3https://peach.blender.org/download/

53

CHAPTER 5. EVALUATION - TIME STUDY 54

– H264 codec with the following settings:

∗ Baseline profile

∗ Level 3.1

2. Medium Quality

– Resolution 1280× 720

– Framerate of 24fps

– Bitrate of 2400kbps

– H264 codec with the following settings:

∗ Baseline profile

∗ Level 3.1

3. High Quality

– Resolution 1920× 1080

– Framerate of 24fps

– Bitrate of 6000kbps

– H264 codec with the following settings:

∗ High profile

∗ Level 4.1

• Audio stream

1. Low Quality

– Stereo channel layout

– Bitrate of 36kbps

– AAC codec

2. Normal Quality

– Stereo channel layout

– Bitrate of 56kbps

– AAC codec

Listings B.1 and B.2 show the different JSON objects that were sent as a POST body to the /has transcodes/

REST API. Listings B.3 and B.4 on the other hand show the raw FFmpeg and MP4Box commands re-
quired to manually prepare the content for adaptive streaming.

The expectation is that both media artifacts in all test cases will show a clear difference in timing
because of the expected overhead the Bendwit platform introduces. The HLS test cases are expected
to show bigger time differences due to the way Bendwit creates the master m3u8 playlist (described in
Chapter 4).

CHAPTER 5. EVALUATION - TIME STUDY 55

5.2 Findings

Figure 5.1: Sintel test case: Bendwit preparation times versus manual preparation times boxplots

CHAPTER 5. EVALUATION - TIME STUDY 56

Figure 5.2: Big Buck Bunny test case: Bendwit preparation times versus manual preparation
times boxplots

CHAPTER 5. EVALUATION - TIME STUDY 57

Figure 5.3: Bendwit HAS preparation versus manual HAS preparation time comparison

The findings match the hypothesis in the sense that all test cases show a clear difference in HAS prepara-
tion time. This indicates that the Bendwit platform introduces some overhead as expected. This overhead
stems from the intra and extra configuration conflict management and source artifact probing built into
the Bendwit CLI tool as well as the communication between the user, the REST API, the job scheduler,
the Bendwit CLI tool and the user supplied webhook.

Chapter 6

Conclusion

To conclude this thesis, this chapter will give a small recapitulation of all the principles and things
learned from the perspective of the author. When I started out with this thesis, I did not know a sin-
gle thing about the topic. I had seen the evolution from Flash to HTML 5 media players and noticed
that client players started handling video playback in a different way, but never really focused on what
happened behind the scenes. Little did I know, this would once become the subject of my bachelor thesis.

At the very beginning, I assumed to do some research into what adaptive streaming entails and then
spend the bulk of my time implementing a platform that prepares media content for adaptive streaming.
Obviously, I was very wrong with this assumption. In order to understand what adaptive streaming
is, I had to go back and look into many other subjects like media container formats, codecs, streaming
protocols, . . . I quickly came to the conclusion that the world of media is a very broad one. That is why
I picked out the more popular codecs that are used for streaming and examined those in detail. I wrote
down my findings in Chapters 2 and 3. When writing these chapters, I felt I could go a lot more in
depth into certain topics; the H264 codec for example is a very complex one with support for a lot of
features which were not all described in this thesis. At certain moments during the research I felt lost in
the abundance of information I found, which made me take a step back and work in a different fashion.
Instead of researching every piece of information I found on media, I started working in a way that led
me towards my end goal: creating a platform for preparing media content for adaptive streaming. This
is the reason why all the information in Chapters 2 and 3 are primarily focused on adaptive streaming.

Once I had a basic understanding of adaptive streaming, I went on to trying different tools for ma-
nipulating and segmenting media. I quickly found the most commonly used tools FFmpeg, FFprobe and
MP4Box which led to the creation of the Bendwit CLI tool. The CLI tool uses the previously mentioned
tools to create different media qualities from a specified input media artifact and outputs a DASH or
HLS manifest, depending on what the user requests. Instead of creating a HAS preparation platform in
a monolithic codebase, I opted for a layered approach with separation of concerns in mind. This resulted
in a REST API which sends requests to the Bendwit CLI tool via a Job Scheduler, Bendwit users in-
teract with the Bendwit platform directly via the REST API or via the Website and/or Developer API
interfaces. This way, future platform changes could be made to the Website, REST API or Job Scheduler
without the need of touching the media preparation codebase in the Bendwit CLI tool. This choice also
resulted in a standalone adaptive streaming preparation tool which can be used by expert users directly
via a CLI without the overhead of using a complete platform via a REST API. All the different layers
of which Bendwit consists are described in Chapter 4 along with how to use them and how they were
designed.

When looking at the findings described in Chapter 5, I can conclude that the Bendwit platform per-
forms well given the circumstances in which it was developed. Media encoding services typically require
strong hardware setups capable of transcoding media at fast rates. This is something I did not have access
to during the development, it did on the other hand force me to develop a platform which is capable
of working on lower end devices such as consumer laptops, which on its own is a very fun challenge as
resources such as processing power, memory and hardware codec support are limited.

58

CHAPTER 6. CONCLUSION 59

Comparing Bendwit to the competitors described in Section 1.3, the Bendwit platform offers a simi-
lar style of preparing media for adaptive streaming. I deliberately did not look at how other platforms
implemented their REST API’s and developer API’s at the beginning of this thesis and came with a very
similar setup for Bendwit. The way Bendwit differentiates itself with the earlier described competitors,
is with the novice user interface the website provides. Bendwit provides predefined quality sets which
can be used easily by any Bendwit user to prepare their media for adaptive streaming. Other platforms
do not provide this abstraction and rely on the fact that users need to have a technical know-how about
media codecs and adaptive streaming implementations.

Reflecting back on the time spent on this thesis and its implementation, I can say it has been quite
the adventure. One I can recommend to any bachelor student, knowing that they will gain a lot of knowl-
edge and experience on the subject of adaptive streaming. I went in with zero knowledge and came out
with an understanding of how digital media works, how adaptive streaming looks like these days, what
codecs and options to use in which situation or why certain media files do not play on certain devices
and so much more. It has truly been an eye opener to something most people think they understand or
even take for granted. The bachelor thesis has even sparked my interest to look further into multimedia
studies. The only regret I have, looking back, is that I did not have enough time to realise all the ideas
I had concerning the implementation. I enjoyed my time programming the platform a lot, but like many
programmers I was naive to the idea that no problems and bugs would arise during the development. If
asked for advice concerning a bachelor thesis, I would say to not underestimate the total package, plan
enough time on your research and write down every idea you have. Planning the whole setup is crucial
and will give you insight in advance which you wouldn’t have when jumping in head first. I planned every
part of the Bendwit separately, which is something I regret in hindsight. If I had planned every element
of Bendwit at the same time, I would have had a better overview of the workings and communication
required to make the Bendwit layers work with each other. I also recommend newcomers to the topic of
adaptive streaming to thoroughly research the topic, find out the whys and hows and play around with
the HAS implementations themselves. Only by doing so will you discover how HAS truly works. The
world of HAS is still in its infancy; many bugs exists in HAS client players, the segmentation tools still
do not support everything, . . . only by knowing how HAS works will you be able to reason and figure out
why certain setups fail or why they work in the first place.

Chapter 7

Future work

As briefly mentioned in Chapter 6, due to time constraints, not every idea made the final implementation.
As it currently stands, the Bendwit platform could use improvements which would make it more robust
and faster. This chapter will shortly describe some improvements which would benefit Bendwit.

7.1 Containerized Nodes

Currently the job scheduler simply spawns dedicated Bendwit CLI instances for probing and transcoding
media. This idea is ideal for a small scale solution, but does not scale that well. Instead of spawning
dedicated Bendwit CLI instances, containerized nodes could be used. For example Docker1 containers
could contain everything needed to run Bendwit CLI instances, these could be made available on multiple
servers which are controlled by the job scheduler on the master server. The idea can even be expanded
by letting NGINX do the loadbalancing and spread the REST API requests over multiple job schedulers
on different systems. The system would then be scalable and balance according to the user request
load.

7.2 Bendwit CLI Performance Boost

During the development of the Bendwit CLI tool, an HP Probook 650 G1 laptop2 was used. This laptop
only has CPU video encoding and decoding support. Due to this constraint no dedicated hardware en-
coding and decoding support was built into the Bendwit CLI tool. If access to a powerful graphics card,
like the Nvidia GeForce GTX 10803, becomes available; support for hardware encoding and decoding
configuration classes could be added to the Bendwit CLI tool, making it perform a lot faster.

Due to the same hardware constraints, the Bendwit CLI tool was created in such a way that it performs
every transcode on a new FFmpeg instance instead using the FFmpeg multi-core ability of performing
multiple transcodes at the same time. Effectively transcoding all qualities on a one-by-one basis. If access
to dedicated transcoding hardware becomes available, support for multithreaded transcoding jobs could
be added. Extending on that idea, a balancing system could be introduced that senses how much load
a system can take and thus scale the multithreaded transcoding of the different qualities according to
this.

1https://www.docker.com/
2http://store.hp.com/us/en/mdp/probook-650
3https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080/

60

CHAPTER 7. FUTURE WORK 61

7.3 Interactive REST API

At the time of writing, the REST API works in a request and process fashion. For example, a user
requests a HAS preparation by supplying all wanted information in one request to the REST API; the
Bendwit platform then performs this preparation and the user polls regularly for a status update or waits
on the optional webhook report. Instead of supplying all HAS preparation data in one request, this
process could be made more interactive. A user could for example work in multiple steps: declare a new
HAS preparation job, add some encodings to the job via multiple REST API calls and finally declare that
the job configuration is done so that the Bendwit platform can prepare the media for adaptive streaming.
During this process, the REST API could report faulty encoding configurations, conflicts, . . . to the user
making it more interactive; in the current implementation, the REST API only reports problems after a
full HAS preparation request has been submitted.

Appendices

62

Appendix A

JSON Schemas

A.1 Probes Schema

1 {

2 "type": "object",

3 "properties": {

4 "external_url": {

5 "type": "string"

6 },

7 "media_id": {

8 "type": "string"

9 },

10 "webhook": {

11 "type": "string"

12 }

13 },

14 "oneOf": [

15 {

16 "required": [

17 "external_url"

18]

19 },

20 {

21 "required": [

22 "media_id"

23]

24 }

25]

26 }

Listing A.1: /probes/ JSON schema

A.2 HAS Transcodes Schema

1 {

2 "type": "object",

3 "properties": {

4 "external_url": {

5 "type": "string"

6 },

63

APPENDIX A. JSON SCHEMAS 64

7 "media_id": {

8 "type": "string"

9 },

10 "webhook": {

11 "type": "string"

12 },

13 "type": {

14 "type": "string",

15 "enum": [

16 "dash",

17 "hls"

18]

19 },

20 "segment_length": {

21 "type": "integer",

22 "minimum": 1000

23 },

24 "encodings": {

25 "type": "object",

26 "properties": {

27 "h264": {

28 "type": "array",

29 "minItems": 1,

30 "items": {

31 "type": "object",

32 "properties": {

33 "source_index": {

34 "type": "integer",

35 "minimum": 0

36 },

37 "media_height": {

38 "type": "integer",

39 "minimum": 0

40 },

41 "media_width": {

42 "type": "integer",

43 "minimum": 0

44 },

45 "kilobitrate": {

46 "type": "integer",

47 "minimum": 0

48 },

49 "aspectratio": {

50 "type": "string"

51 },

52 "framerate": {

53 "type": "integer",

54 "minimum": 0

55 },

56 "h264_profile": {

57 "type": "string",

58 "enum": [

59 "baseline",

60 "main",

61 "high",

62 "high10",

63 "high422",

64 "high444"

APPENDIX A. JSON SCHEMAS 65

65]

66 },

67 "h264_level": {

68 "type": "string",

69 "enum": [

70 "1",

71 "1b",

72 "1.1",

73 "1.2",

74 "1.3",

75 "2",

76 "2.1",

77 "2.2",

78 "3",

79 "3.1",

80 "3.2",

81 "4",

82 "4.1",

83 "4.2",

84 "5",

85 "5.1",

86 "5.2"

87]

88 }

89 },

90 "required": [

91 "source_index",

92 "framerate"

93],

94 "dependencies": {

95 "h264_profile": "h264_level",

96 "h264_level": "h264_profile"

97 }

98 }

99 },

100 "aac": {

101 "type": "array",

102 "minItems": 1,

103 "items": {

104 "type": "object",

105 "properties": {

106 "source_index": {

107 "type": "integer",

108 "minimum": 0

109 },

110 "channel_layout": {

111 "type": "string",

112 "enum": [

113 "mono",

114 "stereo",

115 "2.1",

116 "5.1",

117 "7.1"

118]

119 },

120 "kilobitrate": {

121 "type": "integer",

122 "minimum": 0

APPENDIX A. JSON SCHEMAS 66

123 }

124 },

125 "required": [

126 "source_index"

127]

128 }

129 },

130 "webvtt": {

131 "type": "array",

132 "minItems": 1,

133 "items": {

134 "type": "object",

135 "properties": {

136 "source_index": {

137 "type": "integer",

138 "minimum": 0

139 }

140 },

141 "required": [

142 "source_index"

143]

144 }

145 }

146 }

147 }

148 },

149 "allOf": [

150 {

151 "oneOf": [

152 {

153 "required": [

154 "external_url"

155]

156 },

157 {

158 "required": [

159 "media_id"

160]

161 }

162]

163 },

164 {

165 "required": [

166 "type",

167 "segment_length",

168 "encodings"

169]

170 }

171]

172 }

Listing A.2: /has transcodes/ JSON schema

The “dependencies” indicate that when one property is specified, the other one must also be specified.
Which in this case enforces that H264 profile and level will both be specified.

A.3 Media Schema

APPENDIX A. JSON SCHEMAS 67

1 {

2 "type": "object",

3 "properties": {

4 "external_url": {

5 "type": "string"

6 },

7 "webhook": {

8 "type": "string"

9 }

10 },

11 "required": [

12 "external_url"

13]

14 }

Listing A.3: /media/ JSON schema

Appendix B

Evaluation Configurations

B.1 Sintel Open Movie REST API Configuration

1 {

2 "media_id":"bea6827dcb504f8daff85d3fa9c5061a",

3 "type":"dash",

4 "segment_length":3000,

5 "webhook":"http://nethelix.org/bendwit/timestamp_webhook.php",

6 "encodings":{

7 "h264":[

8 {

9 "source_index":0,

10 "media_height":360,

11 "media_width":640,

12 "h264_profile":"baseline",

13 "h264_level":"3.1",

14 "kilobitrate":500,

15 "framerate":24

16 },

17 {

18 "source_index":0,

19 "media_height":720,

20 "media_width":1280,

21 "h264_profile":"baseline",

22 "h264_level":"3.1",

23 "kilobitrate":2400,

24 "framerate":24

25 },

26 {

27 "source_index":0,

28 "media_height":1080,

29 "media_width":1920,

30 "h264_profile":"high",

31 "h264_level":"4.1",

32 "kilobitrate":6000,

33 "framerate":24

34 }

35],

36 "aac":[

37 {

38 "source_index":1,

39 "channel_layout":"stereo",

68

APPENDIX B. EVALUATION CONFIGURATIONS 69

40 "kilobitrate":36

41 },

42 {

43 "source_index":1,

44 "channel_layout":"stereo",

45 "kilobitrate":56

46 }

47]

48 }

49 }

Listing B.1: The Sintel open movie project DASH REST configuration

1 {

2 "media_id":"bea6827dcb504f8daff85d3fa9c5061a",

3 "type":"hls",

4 "segment_length":3000,

5 "webhook":"http://nethelix.org/bendwit/timestamp_webhook.php",

6 "encodings":{

7 "h264":[

8 {

9 "source_index":0,

10 "media_height":360,

11 "media_width":640,

12 "h264_profile":"baseline",

13 "h264_level":"3.1",

14 "kilobitrate":500,

15 "framerate":24

16 },

17 {

18 "source_index":0,

19 "media_height":720,

20 "media_width":1280,

21 "h264_profile":"baseline",

22 "h264_level":"3.1",

23 "kilobitrate":2400,

24 "framerate":24

25 },

26 {

27 "source_index":0,

28 "media_height":1080,

29 "media_width":1920,

30 "h264_profile":"high",

31 "h264_level":"4.1",

32 "kilobitrate":6000,

33 "framerate":24

34 }

35],

36 "aac":[

37 {

38 "source_index":1,

39 "channel_layout":"stereo",

40 "kilobitrate":36

41 },

42 {

43 "source_index":1,

44 "channel_layout":"stereo",

45 "kilobitrate":56

46 }

APPENDIX B. EVALUATION CONFIGURATIONS 70

47]

48 }

49 }

Listing B.2: The Sintel open movie project HLS REST configuration

B.2 Sintel Open Movie Manual Commands

1 ffmpeg -y -i /media/bea6827dcb504f8daff85d3fa9c5061a/raw_media.bendwit -c:v libx264 -

vf scale=w=640:h=360 -pix_fmt yuv420p -r 24 -profile:v baseline -level 3.1 -

x264opts keyint=72:min-keyint=72:scenecut=-1 -an -sn -dn -preset ultrafast -

map_chapters -1 -pass 1 -passlogfile /media/bea6827dcb504f8daff85d3fa9c5061a

/2052327cb2c24d9a9cf8ed5424b463c2/pass_log_video_transcode_2.mp4 -b:v 500k -

maxrate 500k -bufsize 1000k -f mp4 /dev/null

2

3 ffmpeg -y -i /media/bea6827dcb504f8daff85d3fa9c5061a/raw_media.bendwit -c:v libx264 -

vf scale=w=640:h=360 -pix_fmt yuv420p -r 24 -profile:v baseline -level 3.1 -

x264opts keyint=72:min-keyint=72:scenecut=-1 -an -sn -dn -preset ultrafast -

map_chapters -1 -pass 2 -passlogfile /media/bea6827dcb504f8daff85d3fa9c5061a

/2052327cb2c24d9a9cf8ed5424b463c2/pass_log_video_transcode_2.mp4 -b:v 500k -

maxrate 500k -bufsize 1000k /media/bea6827dcb504f8daff85d3fa9c5061a/2052327

cb2c24d9a9cf8ed5424b463c2/video_transcode_2.mp4

4

5 ffmpeg -y -i /media/bea6827dcb504f8daff85d3fa9c5061a/raw_media.bendwit -c:v libx264 -

vf scale=w=1280:h=720 -pix_fmt yuv420p -r 24 -profile:v baseline -level 3.1 -

x264opts keyint=72:min-keyint=72:scenecut=-1 -an -sn -dn -preset ultrafast -

map_chapters -1 -pass 1 -passlogfile /media/bea6827dcb504f8daff85d3fa9c5061a

/2052327cb2c24d9a9cf8ed5424b463c2/pass_log_video_transcode_3.mp4 -b:v 2400k -

maxrate 2400k -bufsize 4800k -f mp4 /dev/null

6

7 ffmpeg -y -i /media/bea6827dcb504f8daff85d3fa9c5061a/raw_media.bendwit -c:v libx264 -

vf scale=w=1208:h=720 -pix_fmt yuv420p -r 24 -profile:v baseline -level 3.1 -

x264opts keyint=72:min-keyint=72:scenecut=-1 -an -sn -dn -preset ultrafast -

map_chapters -1 -pass 2 -passlogfile /media/bea6827dcb504f8daff85d3fa9c5061a

/2052327cb2c24d9a9cf8ed5424b463c2/pass_log_video_transcode_3.mp4 -b:v 2400k -

maxrate 2400k -bufsize 4800k /media/bea6827dcb504f8daff85d3fa9c5061a/2052327

cb2c24d9a9cf8ed5424b463c2/video_transcode_3.mp4

8

9 ffmpeg -y -i /media/bea6827dcb504f8daff85d3fa9c5061a/raw_media.bendwit -c:v libx264 -

vf scale=w=1920:h=1080 -pix_fmt yuv420p -r 24 -profile:v high -level 4.1 -x264opts

keyint=72:min-keyint=72:scenecut=-1 -an -sn -dn -preset ultrafast -map_chapters

-1 -pass 1 -passlogfile /media/bea6827dcb504f8daff85d3fa9c5061a/2052327

cb2c24d9a9cf8ed5424b463c2/pass_log_video_transcode_4.mp4 -b:v 6000k -maxrate 6000k

-bufsize 12000k -f mp4 /dev/null

10

11 ffmpeg -y -i /media/bea6827dcb504f8daff85d3fa9c5061a/raw_media.bendwit -c:v libx264 -

vf scale=w=1920:h=1080 -pix_fmt yuv420p -r 24 -profile:v high -level 4.1 -x264opts

keyint=72:min-keyint=72:scenecut=-1 -an -sn -dn -preset ultrafast -map_chapters

-1 -pass 2 -passlogfile /media/bea6827dcb504f8daff85d3fa9c5061a/2052327

cb2c24d9a9cf8ed5424b463c2/pass_log_video_transcode_4.mp4 -b:v 6000k -maxrate 6000k

-bufsize 12000k /media/bea6827dcb504f8daff85d3fa9c5061a/2052327

cb2c24d9a9cf8ed5424b463c2/video_transcode_4.mp4

12

13 ffmpeg -y -i /media/bea6827dcb504f8daff85d3fa9c5061a/raw_media.bendwit -map_chapters

-1 -vn -dn -c:a aac -b:a 36k -ac 2 /media/bea6827dcb504f8daff85d3fa9c5061a/2052327

cb2c24d9a9cf8ed5424b463c2/audio_transcode_0.mp4

14

APPENDIX B. EVALUATION CONFIGURATIONS 71

15 ffmpeg -y -i /media/bea6827dcb504f8daff85d3fa9c5061a/raw_media.bendwit -map_chapters

-1 -vn -dn -c:a aac -b:a 56k -ac 2 /media/bea6827dcb504f8daff85d3fa9c5061a/2052327

cb2c24d9a9cf8ed5424b463c2/audio_transcode_1.mp4

16

17 MP4Box -dash 3000 -profile dashavc264:live -url-template -bs-switching no -rap -frag-

rap -out /media/bea6827dcb504f8daff85d3fa9c5061a/2052327cb2c24d9a9cf8ed5424b463c2/

manifest -segment-name $RepresentationID$/segment_$Number$ /media/

bea6827dcb504f8daff85d3fa9c5061a/2052327cb2c24d9a9cf8ed5424b463c2/

audio_transcode_0.mp4#audio /media/bea6827dcb504f8daff85d3fa9c5061a/2052327

cb2c24d9a9cf8ed5424b463c2/audio_transcode_1.mp4#audio /media/

bea6827dcb504f8daff85d3fa9c5061a/2052327cb2c24d9a9cf8ed5424b463c2/

video_transcode_2.mp4#video /media/bea6827dcb504f8daff85d3fa9c5061a/2052327

cb2c24d9a9cf8ed5424b463c2/video_transcode_4.mp4#video /media/

bea6827dcb504f8daff85d3fa9c5061a/2052327cb2c24d9a9cf8ed5424b463c2/

video_transcode_3.mp4#video

Listing B.3: The Sintel open movie project manual MPEG-DASG HAS preparation commands

1 ffmpeg -y -i /media/bea6827dcb504f8daff85d3fa9c5061a/raw_media.bendwit -c:v libx264 -

vf scale=w=640:h=360 -pix_fmt yuv420p -r 24 -profile:v baseline -level 3.1 -

x264opts keyint=72:min-keyint=72:scenecut=-1 -an -sn -dn -preset ultrafast -

map_chapters -1 -pass 1 -passlogfile /media/bea6827dcb504f8daff85d3fa9c5061a

/2052327cb2c24d9a9cf8ed5424b463c2/pass_log_video_transcode_2.mp4 -b:v 500k -

maxrate 500k -bufsize 1000k -f mp4 /dev/null

2

3 ffmpeg -y -i /media/bea6827dcb504f8daff85d3fa9c5061a/raw_media.bendwit -c:v libx264 -

vf scale=w=640:h=360 -pix_fmt yuv420p -r 24 -profile:v baseline -level 3.1 -

x264opts keyint=72:min-keyint=72:scenecut=-1 -an -sn -dn -preset ultrafast -

map_chapters -1 -pass 2 -passlogfile /media/bea6827dcb504f8daff85d3fa9c5061a

/2052327cb2c24d9a9cf8ed5424b463c2/pass_log_video_transcode_2.mp4 -b:v 500k -

maxrate 500k -bufsize 1000k /media/bea6827dcb504f8daff85d3fa9c5061a/2052327

cb2c24d9a9cf8ed5424b463c2/video_transcode_2.mp4

4

5 ffmpeg -y -i /media/bea6827dcb504f8daff85d3fa9c5061a/raw_media.bendwit -c:v libx264 -

vf scale=w=1208:h=720 -pix_fmt yuv420p -r 24 -profile:v baseline -level 3.1 -

x264opts keyint=72:min-keyint=72:scenecut=-1 -an -sn -dn -preset ultrafast -

map_chapters -1 -pass 1 -passlogfile /media/bea6827dcb504f8daff85d3fa9c5061a

/2052327cb2c24d9a9cf8ed5424b463c2/pass_log_video_transcode_3.mp4 -b:v 2400k -

maxrate 2400k -bufsize 4800k -f mp4 /dev/null

6

7 ffmpeg -y -i /media/bea6827dcb504f8daff85d3fa9c5061a/raw_media.bendwit -c:v libx264 -

vf scale=w=1280:h=720 -pix_fmt yuv420p -r 24 -profile:v baseline -level 3.1 -

x264opts keyint=72:min-keyint=72:scenecut=-1 -an -sn -dn -preset ultrafast -

map_chapters -1 -pass 2 -passlogfile /media/bea6827dcb504f8daff85d3fa9c5061a

/2052327cb2c24d9a9cf8ed5424b463c2/pass_log_video_transcode_3.mp4 -b:v 2400k -

maxrate 2400k -bufsize 4800k /media/bea6827dcb504f8daff85d3fa9c5061a/2052327

cb2c24d9a9cf8ed5424b463c2/video_transcode_3.mp4

8

9 ffmpeg -y -i /media/bea6827dcb504f8daff85d3fa9c5061a/raw_media.bendwit -c:v libx264 -

vf scale=w=1920:h=1080 -pix_fmt yuv420p -r 24 -profile:v high -level 4.1 -x264opts

keyint=72:min-keyint=72:scenecut=-1 -an -sn -dn -preset ultrafast -map_chapters

-1 -pass 1 -passlogfile /media/bea6827dcb504f8daff85d3fa9c5061a/2052327

cb2c24d9a9cf8ed5424b463c2/pass_log_video_transcode_4.mp4 -b:v 6000k -maxrate 6000k

-bufsize 12000k -f mp4 /dev/null

10

11 ffmpeg -y -i /media/bea6827dcb504f8daff85d3fa9c5061a/raw_media.bendwit -c:v libx264 -

vf scale=w=1920:h=1080 -pix_fmt yuv420p -r 24 -profile:v high -level 4.1 -x264opts

keyint=72:min-keyint=72:scenecut=-1 -an -sn -dn -preset ultrafast -map_chapters

-1 -pass 2 -passlogfile /media/bea6827dcb504f8daff85d3fa9c5061a/2052327

APPENDIX B. EVALUATION CONFIGURATIONS 72

cb2c24d9a9cf8ed5424b463c2/pass_log_video_transcode_4.mp4 -b:v 6000k -maxrate 6000k

-bufsize 12000k /media/bea6827dcb504f8daff85d3fa9c5061a/2052327

cb2c24d9a9cf8ed5424b463c2/video_transcode_4.mp4

12

13 ffmpeg -y -i /media/bea6827dcb504f8daff85d3fa9c5061a/raw_media.bendwit -map_chapters

-1 -vn -dn -c:a aac -b:a 36k -ac 2 /media/bea6827dcb504f8daff85d3fa9c5061a/2052327

cb2c24d9a9cf8ed5424b463c2/audio_transcode_0.mp4

14

15 ffmpeg -y -i /media/bea6827dcb504f8daff85d3fa9c5061a/raw_media.bendwit -map_chapters

-1 -vn -dn -c:a aac -b:a 56k -ac 2 /media/bea6827dcb504f8daff85d3fa9c5061a/2052327

cb2c24d9a9cf8ed5424b463c2/audio_transcode_1.mp4

16

17 ffmpeg -i /media/bea6827dcb504f8daff85d3fa9c5061a/84e31414510d4867abb8a8b2bff131cc/

audio_transcode_1.mp4 -codec copy -map 0 -bsf:v h264_mp4toannexb -f segment -g 72

-segment_time 3.000 -segment_list /media/bea6827dcb504f8daff85d3fa9c5061a/84

e31414510d4867abb8a8b2bff131cc/1/out.m3u8 /media/bea6827dcb504f8daff85d3fa9c5061a

/84e31414510d4867abb8a8b2bff131cc/1/segment%d.ts

18

19 ffmpeg -i /media/bea6827dcb504f8daff85d3fa9c5061a/84e31414510d4867abb8a8b2bff131cc/

audio_transcode_0.mp4 -codec copy -map 0 -bsf:v h264_mp4toannexb -f segment -g 72

-segment_time 3.000 -segment_list /media/bea6827dcb504f8daff85d3fa9c5061a/84

e31414510d4867abb8a8b2bff131cc/2/out.m3u8 /media/bea6827dcb504f8daff85d3fa9c5061a

/84e31414510d4867abb8a8b2bff131cc/2/segment%d.ts

20

21 ffmpeg -i /media/bea6827dcb504f8daff85d3fa9c5061a/84e31414510d4867abb8a8b2bff131cc/

video_transcode_2.mp4 -codec copy -map 0 -bsf:v h264_mp4toannexb -f segment -g 72

-segment_time 3.000 -segment_list /media/bea6827dcb504f8daff85d3fa9c5061a/84

e31414510d4867abb8a8b2bff131cc/3/out.m3u8 /media/bea6827dcb504f8daff85d3fa9c5061a

/84e31414510d4867abb8a8b2bff131cc/3/segment%d.ts

22

23 ffmpeg -i /media/bea6827dcb504f8daff85d3fa9c5061a/84e31414510d4867abb8a8b2bff131cc/

video_transcode_4.mp4 -codec copy -map 0 -bsf:v h264_mp4toannexb -f segment -g 72

-segment_time 3.000 -segment_list /media/bea6827dcb504f8daff85d3fa9c5061a/84

e31414510d4867abb8a8b2bff131cc/4/out.m3u8 /media/bea6827dcb504f8daff85d3fa9c5061a

/84e31414510d4867abb8a8b2bff131cc/4/segment%d.ts

24

25 ffmpeg -i /media/bea6827dcb504f8daff85d3fa9c5061a/84e31414510d4867abb8a8b2bff131cc/

video_transcode_3.mp4 -codec copy -map 0 -bsf:v h264_mp4toannexb -f segment -g 72

-segment_time 3.000 -segment_list /media/bea6827dcb504f8daff85d3fa9c5061a/84

e31414510d4867abb8a8b2bff131cc/5/out.m3u8 /media/bea6827dcb504f8daff85d3fa9c5061a

/84e31414510d4867abb8a8b2bff131cc/5/segment%d.ts

Listing B.4: The Sintel open movie project manual HLS HAS preparation commands

Bibliography

[1] White paper: Cisco VNI Forecast and Methodology, 2015-2020. url: http://www.cisco.com/c/
en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-

white-paper-c11-481360.html (visited on 05/04/2017).

[2] State of the internet. url: https://www.akamai.com/us/en/about/our-thinking/state-of-
the-internet-report/ (visited on 04/28/2017).

[3] Greg Sterling. Report: Mobile Search Queries 29 Percent Of Total But Growth Modest. url: http:
//searchengineland.com/report- mobile- search- queries- 29- percent- of- total- but-

growth-modest-217501 (visited on 04/28/2017).

[4] Supported Encoding for Formats. url: https : / / bitmovin . com / encoding - documentation /

supported-formats-encoding/ (visited on 08/14/2017).

[5] Bitmovin Video Player. url: https://bitmovin.com/video-player/ (visited on 08/14/2017).

[6] API Reference. url: http://coconut.co/docs/api/config/variables (visited on 08/14/2017).

[7] MPEG-DASH. url: http://coconut.co/docs/api/config/dash (visited on 08/14/2017).

[8] HTTP Live Streaming. url: http://coconut.co/docs/api/config/hls (visited on 08/14/2017).

[9] RTP: A Transport Protocol for Real-Time Applications. url: https://tools.ietf.org/html/
rfc3550 (visited on 04/28/2017).

[10] Rafael Osso. Handbook of Emerging Communications Technologies: The Next Decade. 1 september
1999. url: https://books.google.be/books?id=5fms2DW7mMUC&pg=PA42.

[11] KyoungSoo Park Sangwook Bae Dahyun Jang. “Why Is HTTP Adaptive Streaming So Hard?” In:
(2015). url: https://www.ndsl.kaist.edu/~kyoungsoo/papers/apsys2015.pdf.

[12] Iain E. Richardson. Video Codec Design: Developing Image and Video Compression Systems. 2002.
isbn: 978-0-471-48553-7.

[13] NVIDIA CUDA Video Decoder. url: http://docs.nvidia.com/cuda/video-decoder/index.
html (visited on 04/28/2017).

[14] AMD Unified Video Decoder (UVD). url: https://www.amd.com/Documents/UVD3_whitepaper.
pdf (visited on 04/28/2017).

[15] State of Peer-to-Peer (P2P) Communication across Network Address Translators (NATs). url:
https://tools.ietf.org/html/rfc5128#section-3.3 (visited on 04/28/2017).

[16] Hypertext Transfer Protocol – HTTP/1.1. url: https : / / tools . ietf . org / html / rfc2616 #

section-1.4 (visited on 04/28/2017).

[17] HTTP over TLS. url: https://tools.ietf.org/html/rfc2818#section- 2.3 (visited on
04/28/2017).

[18] Streaming vs. Progressive Download. url: https : / / www . unique - media . tv / support / 28 /

Introduction/Streaming_vs_Progressive_Download (visited on 04/29/2017).

[19] MPEG — The Moving Picture Experts Group website. url: http://mpeg.chiariglione.org/
(visited on 04/29/2017).

[20] Information technology — Dynamic adaptive streaming over HTTP (DASH) — Part 1: Media pre-
sentation description and segment formats. url: http://standards.iso.org/ittf/PubliclyAvailableStandards/
c065274_ISO_IEC_23009-1_2014.zip (visited on 04/30/2017).

73

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.akamai.com/us/en/about/our-thinking/state-of-the-internet-report/
https://www.akamai.com/us/en/about/our-thinking/state-of-the-internet-report/
http://searchengineland.com/report-mobile-search-queries-29-percent-of-total-but-growth-modest-217501
http://searchengineland.com/report-mobile-search-queries-29-percent-of-total-but-growth-modest-217501
http://searchengineland.com/report-mobile-search-queries-29-percent-of-total-but-growth-modest-217501
https://bitmovin.com/encoding-documentation/supported-formats-encoding/
https://bitmovin.com/encoding-documentation/supported-formats-encoding/
https://bitmovin.com/video-player/
http://coconut.co/docs/api/config/variables
http://coconut.co/docs/api/config/dash
http://coconut.co/docs/api/config/hls
https://tools.ietf.org/html/rfc3550
https://tools.ietf.org/html/rfc3550
https://books.google.be/books?id=5fms2DW7mMUC&pg=PA42
https://www.ndsl.kaist.edu/~kyoungsoo/papers/apsys2015.pdf
http://docs.nvidia.com/cuda/video-decoder/index.html
http://docs.nvidia.com/cuda/video-decoder/index.html
https://www.amd.com/Documents/UVD3_whitepaper.pdf
https://www.amd.com/Documents/UVD3_whitepaper.pdf
https://tools.ietf.org/html/rfc5128#section-3.3
https://tools.ietf.org/html/rfc2616#section-1.4
https://tools.ietf.org/html/rfc2616#section-1.4
https://tools.ietf.org/html/rfc2818#section-2.3
https://www.unique-media.tv/support/28/Introduction/Streaming_vs_Progressive_Download
https://www.unique-media.tv/support/28/Introduction/Streaming_vs_Progressive_Download
http://mpeg.chiariglione.org/
http://standards.iso.org/ittf/PubliclyAvailableStandards/c065274_ISO_IEC_23009-1_2014.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c065274_ISO_IEC_23009-1_2014.zip

BIBLIOGRAPHY 74

[21] Stefan Lederer. Why YouTube & Netflix use MPEG-DASH in HTML5. url: https://bitmovin.
com/status-mpeg-dash-today-youtube-netflix-use-html5-beyond/ (visited on 04/29/2017).

[22] DASH-IF Interoperability Points. url: http://dashif.org/wp-content/uploads/2016/12/
DASH-IF-IOP-v4.0-clean.pdf (visited on 04/29/2017).

[23] Microsoft Smooth Streaming. url: https://www.iis.net/downloads/microsoft/smooth-

streaming (visited on 04/30/2017).

[24] Adobe HTTP Dynamic Streaming Specification. url: http://wwwimages.adobe.com/content/
dam/Adobe/en/devnet/hds/pdfs/adobe-hds-specification.pdf (visited on 04/30/2017).

[25] MPEG-4 Advanced Video Coding. url: http://mpeg.chiariglione.org/standards/mpeg-

4/advanced-video-coding (visited on 04/29/2017).

[26] Christopher Müller and Christian Timmerer. “A VLC Media Player Plugin enabling Dynamic
Adaptive Streaming over HTTP”. In: (2011). url: http://www-itec.uni-klu.ac.at/bib/
files/p723-muller.pdf.

[27] HTTP Live Streaming. url: https://developer.apple.com/streaming/ (visited on 04/30/2017).

[28] HTTP Live Streaming draft-pantos-http-live-streaming-22. url: https://tools.ietf.org/html/
draft-pantos-http-live-streaming-22 (visited on 04/30/2017).

[29] Best Practices for Creating and Deploying HTTP Live Streaming Media for Apple Devices. url:
https://developer.apple.com/library/content/technotes/tn2224/_index.html (visited on
04/30/2017).

[30] IIS Smooth Streaming Technical Overview. url: http://www.bogotobogo.com/VideoStreaming/
Files/iis8/IIS_Smooth_Streaming_Technical_Overview.pdf (visited on 08/02/2017).

[31] Smooth Streaming. url: https://www.iis.net/downloads/microsoft/smooth- streaming

(visited on 08/02/2017).

[32] IIS Smooth Streaming Client Manifest Format. url: https://msdn.microsoft.com/en- us/

library/ee673436(v=vs.90).aspx (visited on 08/02/2017).

[33] Adobe HDS Basic FAQs. url: http://www.adobe.com/products/hds-dynamic-streaming/faq.
html (visited on 08/03/2017).

[34] Adobe Flash Video File Format Specification Version 10.1. url: http://download.macromedia.
com/f4v/video_file_format_spec_v10_1.pdf (visited on 08/03/2017).

[35] HTTP Dynamic Streaming - An Overview. url: https://www.encoding.com/http-dynamic-
streaming-hds/ (visited on 08/03/2017).

[36] Anthony T. S. Ho; Shujun Li. Handbook of Digital Forensics of Multimedia Data and Devices.
John Wiley & Sons, 2015. isbn: 9781118757079. url: https://books.google.be/books?id=
pDU0DAAAQBAJ&pg=PT146#v=onepage&q&f=false (visited on 07/31/2017).

[37] What is Matroska? url: https://www.matroska.org/technical/whatis/index.html (visited
on 07/31/2017).

[38] FFmpeg naming and logo. url: http://ffmpeg.org/pipermail/ffmpeg-devel/2006-February/
010315.html (visited on 05/01/2017).

[39] FFmpegs future and resigning as leader. url: http://ffmpeg.org/pipermail/ffmpeg-devel/
2015-July/176489.html (visited on 05/01/2017).

[40] The FFmpeg/Libav situation. url: http://blog.pkh.me/p/13-the-ffmpeg-libav-situation.
html (visited on 07/31/2017).

[41] Debate libav-provider ffmpeg. url: https://wiki.debian.org/Debate/libav-provider/ffmpeg
(visited on 05/01/2017).

[42] Supported File Formats, Codecs or Features. url: http://ffmpeg.org/general.html#Supported-
File-Formats_002c-Codecs-or-Features (visited on 05/01/2017).

[43] ffmpeg Documentation. url: http://ffmpeg.org/ffmpeg.html (visited on 05/01/2017).

[44] Instructions to playback Adaptive WebM using DASH. url: http://wiki.webmproject.org/
adaptive- streaming/instructions- to- playback-adaptive- webm- using- dash (visited on
05/01/2017).

[45] ffprobe Documentation. url: https://ffmpeg.org/ffprobe.html (visited on 05/01/2017).

https://bitmovin.com/status-mpeg-dash-today-youtube-netflix-use-html5-beyond/
https://bitmovin.com/status-mpeg-dash-today-youtube-netflix-use-html5-beyond/
http://dashif.org/wp-content/uploads/2016/12/DASH-IF-IOP-v4.0-clean.pdf
http://dashif.org/wp-content/uploads/2016/12/DASH-IF-IOP-v4.0-clean.pdf
https://www.iis.net/downloads/microsoft/smooth-streaming
https://www.iis.net/downloads/microsoft/smooth-streaming
http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/hds/pdfs/adobe-hds-specification.pdf
http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/hds/pdfs/adobe-hds-specification.pdf
http://mpeg.chiariglione.org/standards/mpeg-4/advanced-video-coding
http://mpeg.chiariglione.org/standards/mpeg-4/advanced-video-coding
http://www-itec.uni-klu.ac.at/bib/files/p723-muller.pdf
http://www-itec.uni-klu.ac.at/bib/files/p723-muller.pdf
https://developer.apple.com/streaming/
https://tools.ietf.org/html/draft-pantos-http-live-streaming-22
https://tools.ietf.org/html/draft-pantos-http-live-streaming-22
https://developer.apple.com/library/content/technotes/tn2224/_index.html
http://www.bogotobogo.com/VideoStreaming/Files/iis8/IIS_Smooth_Streaming_Technical_Overview.pdf
http://www.bogotobogo.com/VideoStreaming/Files/iis8/IIS_Smooth_Streaming_Technical_Overview.pdf
https://www.iis.net/downloads/microsoft/smooth-streaming
https://msdn.microsoft.com/en-us/library/ee673436(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/ee673436(v=vs.90).aspx
http://www.adobe.com/products/hds-dynamic-streaming/faq.html
http://www.adobe.com/products/hds-dynamic-streaming/faq.html
http://download.macromedia.com/f4v/video_file_format_spec_v10_1.pdf
http://download.macromedia.com/f4v/video_file_format_spec_v10_1.pdf
https://www.encoding.com/http-dynamic-streaming-hds/
https://www.encoding.com/http-dynamic-streaming-hds/
https://books.google.be/books?id=pDU0DAAAQBAJ&pg=PT146#v=onepage&q&f=false
https://books.google.be/books?id=pDU0DAAAQBAJ&pg=PT146#v=onepage&q&f=false
https://www.matroska.org/technical/whatis/index.html
http://ffmpeg.org/pipermail/ffmpeg-devel/2006-February/010315.html
http://ffmpeg.org/pipermail/ffmpeg-devel/2006-February/010315.html
http://ffmpeg.org/pipermail/ffmpeg-devel/2015-July/176489.html
http://ffmpeg.org/pipermail/ffmpeg-devel/2015-July/176489.html
http://blog.pkh.me/p/13-the-ffmpeg-libav-situation.html
http://blog.pkh.me/p/13-the-ffmpeg-libav-situation.html
https://wiki.debian.org/Debate/libav-provider/ffmpeg
http://ffmpeg.org/general.html#Supported-File-Formats_002c-Codecs-or-Features
http://ffmpeg.org/general.html#Supported-File-Formats_002c-Codecs-or-Features
http://ffmpeg.org/ffmpeg.html
http://wiki.webmproject.org/adaptive-streaming/instructions-to-playback-adaptive-webm-using-dash
http://wiki.webmproject.org/adaptive-streaming/instructions-to-playback-adaptive-webm-using-dash
https://ffmpeg.org/ffprobe.html

BIBLIOGRAPHY 75

[46] ffprobe Documentation - Writers. url: https://ffmpeg.org/ffprobe.html#Writers (visited on
05/01/2017).

[47] GPAC - About us. url: https://gpac.wp.imt.fr/home/about/ (visited on 05/01/2017).

[48] MP4Box. url: https://gpac.wp.imt.fr/mp4box/ (visited on 05/01/2017).

[49] GPAC sourceforge repository. url: https://sourceforge.net/p/gpac/code/2147/ (visited on
05/01/2017).

[50] AVC/H.264 FAQ. url: http://www.mpegla.com/main/programs/AVC/Pages/FAQ.aspx (visited
on 07/31/2017).

[51] H.264 answers Google’s open codec with forever free license. url: https://www.theregister.co.
uk/2010/08/26/mpegla_v_google/ (visited on 07/31/2017).

[52] H.264 Video Codec Adopted for Next Generation DVDs. url: https://www.apple.com/newsroom/
2004/06/23H-264-Video-Codec-Adopted-for-Next-Generation-DVDs/ (visited on 07/31/2017).

[53] Timeline: Apple milestones and product launches. url: https://www.reuters.com/article/us-
apple-timeline-idUSTRE72170T20110303 (visited on 08/01/2017).

[54] Advanced video coding for generic audiovisual services. url: https://www.itu.int/rec/dologin_
pub.asp?lang=e&id=T-REC-H.264-201610-S!!PDF-E&type=items (visited on 08/01/2017).

[55] Reduce Bandwidth Consumption by GOP Settings. url: http://www2.acti.com/support_old/
Package/%7B6060C79F-2A5D-40A4-8837-16B835E3364.PDF (visited on 08/01/2017).

[56] B-Frames. url: http://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/node258.html

(visited on 08/01/2017).

[57] WebM Bitstream Specification License. url: https://www.webmproject.org/license/bitstream/
(visited on 08/02/2017).

[58] Fabio Sonnati. Thoughts on VP8. url: https://sonnati.wordpress.com/tag/vp8/ (visited on
08/02/2017).

[59] Inside WebM Technology: The VP8 Alternate Reference Frame. url: http://blog.webmproject.
org/2010/05/inside-webm-technology-vp8-alternate.html (visited on 08/02/2078).

[60] RTP Payload Format for VP8 Video draft-ietf-payload-vp8-17. url: https://tools.ietf.org/
html/draft-ietf-payload-vp8-17 (visited on 08/02/2017).

[61] VP8 Data Format and Decoding Guide. url: https://tools.ietf.org/html/rfc6386 (visited
on 08/02/2017).

[62] Jan Ozer. First Look: H.264 and VP8 Compared. url: http : / / www . streamingmedia . com /

Articles/Editorial/Featured-Articles/First-Look-H.264-and-VP8-Compared-67266.aspx

(visited on 08/02/2017).

[63] AAC License Fees. url: http://www.via-corp.com/us/en/licensing/aac/licensefees.html
(visited on 08/31/2017).

[64] Karlheinz Brandenburg. “MP3 and AAC explained”. In: (1999). url: https://www.iis.fraunhofer.
de/content/dam/iis/de/doc/ame/conference/AES-17-Conference_mp3-and-AAC-explained_

AES17.pdf.

[65] ISO/IEC 13818-7:2006. url: https://www.iso.org/standard/43345.html (visited on 08/01/2017).

[66] Encoding specifications for music videos. url: https://support.google.com/youtube/answer/
6039860?hl=en (visited on 08/01/2017).

[67] EBU-TTD support in GPAC. url: https://gpac.wp.imt.fr/2014/08/23/ebu-ttd-support-
in-gpac/ (visited on 07/30/2017).

[68] Same-origin policy. url: https://developer.mozilla.org/en-US/docs/Web/Security/Same-
origin_policy (visited on 08/14/2017).

[69] Claire Lauer. “Contending with Terms: “Multimodal” and “Multimedia” in the Academic and
Public Spheres”. In: (). url: https://web.archive.org/web/20140327001010/http://dmp.
osu.edu:80/dmac/supmaterials/lauer.pdf.

[70] DASH Support in MP4Box. url: https://gpac.wp.imt.fr/mp4box/dash/ (visited on 05/01/2017).

[71] JCT-VC - Joint Collaborative Team on Video Coding. url: http://www.itu.int/en/ITU-

T/studygroups/2017-2020/16/Pages/video/jctvc.aspx (visited on 07/31/2017).

https://ffmpeg.org/ffprobe.html#Writers
https://gpac.wp.imt.fr/home/about/
https://gpac.wp.imt.fr/mp4box/
https://sourceforge.net/p/gpac/code/2147/
http://www.mpegla.com/main/programs/AVC/Pages/FAQ.aspx
https://www.theregister.co.uk/2010/08/26/mpegla_v_google/
https://www.theregister.co.uk/2010/08/26/mpegla_v_google/
https://www.apple.com/newsroom/2004/06/23H-264-Video-Codec-Adopted-for-Next-Generation-DVDs/
https://www.apple.com/newsroom/2004/06/23H-264-Video-Codec-Adopted-for-Next-Generation-DVDs/
https://www.reuters.com/article/us-apple-timeline-idUSTRE72170T20110303
https://www.reuters.com/article/us-apple-timeline-idUSTRE72170T20110303
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-H.264-201610-S!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-H.264-201610-S!!PDF-E&type=items
http://www2.acti.com/support_old/Package/%7B6060C79F-2A5D-40A4-8837-16B835E3364.PDF
http://www2.acti.com/support_old/Package/%7B6060C79F-2A5D-40A4-8837-16B835E3364.PDF
http://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/node258.html
https://www.webmproject.org/license/bitstream/
https://sonnati.wordpress.com/tag/vp8/
http://blog.webmproject.org/2010/05/inside-webm-technology-vp8-alternate.html
http://blog.webmproject.org/2010/05/inside-webm-technology-vp8-alternate.html
https://tools.ietf.org/html/draft-ietf-payload-vp8-17
https://tools.ietf.org/html/draft-ietf-payload-vp8-17
https://tools.ietf.org/html/rfc6386
http://www.streamingmedia.com/Articles/Editorial/Featured-Articles/First-Look-H.264-and-VP8-Compared-67266.aspx
http://www.streamingmedia.com/Articles/Editorial/Featured-Articles/First-Look-H.264-and-VP8-Compared-67266.aspx
http://www.via-corp.com/us/en/licensing/aac/licensefees.html
https://www.iis.fraunhofer.de/content/dam/iis/de/doc/ame/conference/AES-17-Conference_mp3-and-AAC-explained_AES17.pdf
https://www.iis.fraunhofer.de/content/dam/iis/de/doc/ame/conference/AES-17-Conference_mp3-and-AAC-explained_AES17.pdf
https://www.iis.fraunhofer.de/content/dam/iis/de/doc/ame/conference/AES-17-Conference_mp3-and-AAC-explained_AES17.pdf
https://www.iso.org/standard/43345.html
https://support.google.com/youtube/answer/6039860?hl=en
https://support.google.com/youtube/answer/6039860?hl=en
https://gpac.wp.imt.fr/2014/08/23/ebu-ttd-support-in-gpac/
https://gpac.wp.imt.fr/2014/08/23/ebu-ttd-support-in-gpac/
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://web.archive.org/web/20140327001010/http://dmp.osu.edu:80/dmac/supmaterials/lauer.pdf
https://web.archive.org/web/20140327001010/http://dmp.osu.edu:80/dmac/supmaterials/lauer.pdf
https://gpac.wp.imt.fr/mp4box/dash/
http://www.itu.int/en/ITU-T/studygroups/2017-2020/16/Pages/video/jctvc.aspx
http://www.itu.int/en/ITU-T/studygroups/2017-2020/16/Pages/video/jctvc.aspx

BIBLIOGRAPHY 76

[72] Jay Yarrow. Google Bullied Out Of Another $26.5 Million In Cash By On2 Shareholders. url:
http://www.businessinsider.com/google-adds-cash-to-its-on2-acquisition-to-close-

the-deal-2010-1?IR=T (visited on 08/02/2017).

http://www.businessinsider.com/google-adds-cash-to-its-on2-acquisition-to-close-the-deal-2010-1?IR=T
http://www.businessinsider.com/google-adds-cash-to-its-on2-acquisition-to-close-the-deal-2010-1?IR=T

	Acknowledgements
	Abstract
	Dutch Summary
	Introduction
	Problem statement
	Bachelor Thesis Outline
	Competitors
	Bitmovin
	Coconut

	Adaptive Streaming
	Strengths of Adaptive Streaming over HTTP
	Device specifications
	Multiple representations
	HTTP
	Live Content versus On-Demand Content

	Dynamic Adaptive Streaming over HTTP (DASH)
	Inner workings
	Supported codecs
	Manifest

	HTTP Live Streaming (HLS)
	Manifest

	Other Adaptive Streaming Implementations
	Microsoft Smooth Streaming
	Adobe HTTP Dynamic Streaming

	Used Tools and Codecs
	Tools
	FFmpeg
	FFprobe
	MP4Box

	Codecs
	H264
	VP8
	AAC

	Bendwit
	Bendwit workflow
	Command Line Tool
	Choice of Programming Language
	Inner workings
	Configuration File
	Currently supported codecs
	Encountered problems

	Job Scheduler
	Choice of Programming Language
	Inner Workings

	REST API
	Choice of Programming Language
	NGINX
	Inner Workings

	Website
	Choice of Programming Language
	Inner Workings

	Python Developer API
	Functional methods
	Object-Oriented Abstraction

	Evaluation - Time Study
	Test Cases
	Findings

	Conclusion
	Future work
	Containerized Nodes
	Bendwit CLI Performance Boost
	Interactive REST API

	Appendices
	JSON Schemas
	Probes Schema
	HAS Transcodes Schema
	Media Schema

	Evaluation Configurations
	Sintel Open Movie REST API Configuration
	Sintel Open Movie Manual Commands

