Same Standards, Different Decisions:
A Study of QUIC and HTTP/3 Implementation Diversity

Robin Marx Joris Herbots Peter Quax
Hasselt University — tUL - EDM Wim Lamotte Hasselt University — tUL — Flanders
Diepenbeek, Belgium Hasselt University — tUL - EDM Make - EDM
robin.marx@uhasselt.be Diepenbeek, Belgium Diepenbeek, Belgium

{first.last}@uhasselt.be

S ¥ «&

Q’&/ AR
Flow Control ) . 1 1
category (FC)
Multiplexing scheduler SEQ RR RR RR
Retransmission
approach (RA) 2 ! 2 3
0 RTT approach (ZR) 1 1 2 3
DATA frame size large | medium | small large
Worst case packetization | g5, | o5 050, | 93547 | 91.42%
goodput efficiency
Dynamic packet
sizing (PMTUD) X X X X
Acknowledgment
frequency (#packets) 28 210 28 10
Congestion Control (CC)
New Reno | Cubic | BBRv1 XK K M VT

peter.quax@uhasselt.be

& < s < i S <&
> &% Q/ N/ @/
1 2 1 3 1 1
SEQ SEQ RR RR RR RR
2 2 2 1 4 2
1 2 2 1 2 1
small large large small | large | small
90.88% | 87.94% 91.52% | 83.92%
X v X X X X
2-4 2-6 2-9 1-38 2 1-17
VXX | VNN | XXX XX | XX

Table 1: Selective behavioral comparison of 10 prevailing IETF QUIC implementations (May 2020). Empty slots indicate no
results for this data point. SEQ = Sequential, RR = Round-Robin. Small = <100kB, medium = >100kB - <1MB, large = >1MB

ABSTRACT

The QUIC and HTTP/3 protocols are quickly maturing together with
their implementations, though many of their low-level behaviours
are not yet well-understood. To help improve this, we empirically
compare 15 IETF QUIC+HTTP/3 implementations for advanced
features like Flow and Congestion Control, 0-RTT, Multiplexing,
and Packetization. We find a large heterogeneity between stacks,
discuss uncovered bugs and conclude that most implementations
are not fully optimized or validated yet. We argue that future work
must prioritize rigorous root-cause analysis of observed behaviours,
and show this is possible by employing our qlog and qvis tools.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EPIQ’20, August 10—14, 2020, Virtual Event, NY, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8047-8/20/08...$15.00
https://doi.org/10.1145/3405796.3405828

14

CCS CONCEPTS

« Networks — Transport protocols; Protocol testing and veri-
fication; Network protocol design.

KEYWORDS
QUIC; HTTP/3; Transport Protocol; 0-RTT; Multiplexing

ACM Reference Format:

Robin Marx, Joris Herbots, Wim Lamotte, and Peter Quax. 2020. Same Stan-
dards, Different Decisions: A Study of QUIC and HTTP/3 Implementation
Diversity. In Workshop on Evolution, Performance, and Interoperability of QUIC
(EPIQ’20), August 10-14, 2020, Virtual Event, NY, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3405796.3405828

1 INTRODUCTION & MOTIVATION

In 2020, after nearly four years, the new QUIC and HTTP/3 (H3) pro-
tocol specifications [8, 23] are finally nearing completion. This long
period is a testament to their complexity, as they combine decades
of best practices, lessons learned from TCP, SCTP and HTTP/2 (H2),
and advanced new features (like zero Round-Trip-Time (RTT) con-
nection establishment) into a new Web protocol suite. To help verify
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that the protocols’ design choices actually hold up in practice and to
prepare for deployment, several parties have been continuously up-
dating over 18 different QUIC/H3 implementations [2]. These stacks
are regularly tested on their so-called “interoperability”, whereby
clients from one implementation test features of servers from other
codebases. This is done both manually and automatically in projects
such as QUIC Tracker and QUIC Interop Runner [4, 37]. Despite this,
bugs are still regularly uncovered (several by our research) and more
advanced features are often not yet well supported or finetuned.
This is partly because existing tests mainly consider compatibility
of the protocols’ binary wire image and the mandatory parts of the
specifications (i.e., MUST and MUST NOT). There are however many
protocol features and situations for which the guidelines are much
less clear and up to the developer’s choice. These features, such as
Flow Control, Congestion Control, Data Multiplexing, Packetization,
and 0 RTT are often more difficult to evaluate in an automated fash-
ion, yet arguably can have a large impact on protocol performance
and behaviour. A good motivating example of this can be found in
H2’s highly complex Prioritization setup [45], which controls how
bandwidth is distributed across concurrent Web page resource down-
loads (§3.2). This system was added late in H2’s design and poorly
validated prior to deployment. Consequently, even today, 5 years
after the protocol’s standardization, many H2 servers and clients do
not properly support this feature [15, 32, 45], and it was decided to
fully redesign this for H3 [34]. As such, we feel it is imperative to
evaluate implementations of these more loosely defined features.
While there is prior academic work that evaluates some of these
aspects [9, 12, 33], most of it is older and outdated, as it considers
Google’s initial QUIC version (gQUIC) [26] (while gQUIC and IETF
QUIC are similar in concepts, their implementation details are funda-
mentally divergent). Newer work on IETF QUIC does exist [35, 36,39],
but is relatively rare despite the protocol’s potential impact on the
field. We believe this low academic involvement is partially due to
QUIC’s rapid evolution/unstableness [24], but also because of its
high complexity, making it more difficult to evaluate correctly. This
was also remarked on by several critical examinations, which have
shown that earlier work often lacks scientific rigor and proper root-
cause analysis. For example, Kakhki et al. [24] provide an in-depth
discussion on the methodology of four previous papers. They find
that prior work often miscalibrated their QUIC implementations,
producing “misleading reports of poor QUIC performance”. They
also show that earlier work “conflates the impact of different work-
loads on QUIC performance” and only “speculates on the reasons for
observed behaviour”, rather than uncovering the low-level mecha-
nisms. More recently, Wolsing et al. [46] looked at studies comparing
TCP’s to QUIC’s performance and found that “all previous work
compares an [unoptimized] out-of-the-box TCP with a highly tuned
QUIC Web stack”, meaning those works are biased and “do not shed
light on the performance of current web stacks”. Consequently, we
feel researchers need to be able to properly configure their employed
implementations and evaluate whether they behave as expected.
We however identified this problem early, recognizing the need
for advanced QUIC debugging and analysis techniques. To this end,
in 2018 we proposed both glog and qvis [29]. qlog is a standard JSON-
based endpoint logging format [31]. It allows implementations to log
critical internal state and debugging information in a structured way,
making it more powerful than typical approaches based on packet
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capture formats. The qlog logging format has found broad uptake in
the IETF QUIC community, with 12/18 implementations currently
outputting qlog [2] and Facebook logging up to 30 billion glog events
per day in production [30]. On the other end, qvis is an open-source
online toolsuite [27] which ingests qlog files to produce powerful
interactive visualizations that help analyze several complex protocol
features. The qvis tools are being used by many QUIC developers to
debug and verify their implementations [13, 30, 41].

As such, as the protocols, their implementations and our tools are
reaching maturity, we feel it is now finally time to investigate if they
are ready to be deployed, researched and evaluated. In this work,
we use glog and qvis to assess implementation differences between
and maturity of 15 of the 18 active IETF QUIC and H3 implementa-
tions [2]. Our results for 10 of these stacks are summarized in Table
1. As other previously mentioned projects target interoperability
testing [4, 37], we instead focus on protocol aspects that are difficult
to automatically measure and that are expected to have a high mea-
sure of heterogeneity across implementations (see §3). We indeed
identify large differences between implementations and find that
many advanced features are not yet finished, tuned or validated in
many stacks. Still, we conclude that with the powerful qlog and qvis
tooling, proper analysis of implementation behaviour is possible,
and thus, with care, researchers can start evaluating IETF QUIC.

2 EXPERIMENTAL METHODOLOGY

To deeply evaluate 15 QUIC implementations in a manageable amount
of time, we rely heavily on the structured glog format [31]. As 12
QUIC stacks output qlog, it is feasible to have always at least one end
(and often both) of a cross-implementation connection outputting
this format. We then both automatically process qlogs with scripts,
and evaluate them manually via the qvis visualizations [27].

We use two main qlog sources. Firstly, to assess client-side be-
haviours, we mostly use the results from the QUIC interop runner [4].
This framework employs an ns-3 [3] network emulation setup be-
tween dockerized versions of 10 different QUIC stacks. While these
tests do not explicitly consider our targeted behaviours, some of
them can be used to obtain the insights we require (e.g., concurrent
file transfer tests show Flow Control limits §3.1 and ACK frequen-
cies §3.4). Secondly, to observe server-side behaviours, we use the
python-based aioquic implementation [1]. Aioquic is chosen be-
cause it supports a wide range of QUIC+H3 features and consistently
achieves the highest scores in existing interoperability tests. We
adapt the aioquic client slightly [1] to more easily vary configuration
parameters and drive automated test runs against QUIC servers. We
do not run these servers ourselves, but instead make use of the fact
that mostimplementers already provide public Internet endpoints for
manual interoperability tests. This allows us to test even non-open
source servers and lets us compare configurations between different
endpoints backed by the same implementation. For example, the
mvfst stack is deployed on a test server and also on Facebook.com,
and both setups show marked differences. To eliminate behavioural
artefacts due to real network variations, we run our tests a minimum
of 5 times on two different Belgian WAN networks: first the Hasselt
University network (1 Gbps downlink/10Mbps up) and second a
residential Wi-Fi network (35Mbps/2Mbps).

We were unable to test all targeted features across all QUIC im-
plementations. Firstly, 3/18 stacks were not considered, as they are
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Figure 1: Connection and Stream-level Flow Control allowances for 4 QUIC stacks. A, B and C show concurrent downloads of 3
files (2MB, 3MB, 5MB). D shows a single 10MB download.

not open source, do not provide an endpoint, and/or are not mature
enough. For the remaining 15, we focus on the 10 most feature-
complete and open source stacks (see Table 1). The other 5 were
tested to the extent possible. 8/15 stacks are backed by larger com-
panies, while 7 are from hobbyists or individual implementers [2].
In §3 we indicate the amount of stacks evaluated for each feature.
After both automated and manual analysis we further validate our
results. Firstly, by performing source code reviews where possible.
Secondly, by asking each stack’s main implementers to confirm and
comment on our conclusions, via the quicdev Slack group [5]. As
such, almost none of the results presented here are conjecture, as
most have been explicitly validated by their original developers.
Our results were gathered intermittently over a 4-month pe-
riod (Jan-Apr 2020) and on IETF QUIC draft versions 25-27. As
several implementations changed their behaviours over time (par-
tially due to insights from our results), the altered stacks were re-
tested in May 2020. Source code for all our tools, full result anal-
ysis sheets, source glog files and other artefacts can be found at
https://qlog.edm.uhasselt.be/epiq.

3 RESULTS
3.1 Flow Control

When downloading, an endpoint must reserve a transport-level re-
ceive buffer to store incoming data, both because data can arrive
out-of-order (but can only be delivered to the application layer in-
order) and because the speed at which the application reads from
the transport can be lower than the network bandwidth. To prevent
overshooting this buffer’s capacity, endpoints utilize a Flow Control
(FC) system to have the sender match its transmission rate to the
speed at which the receive buffer can be emptied. For TCP, which
abstracts transported data as a single, ordered byte stream, its sin-
gular “receive window” bounds the active bytes in flight allowance
and grows and shrinks over time (e.g., a receive window of 0 means
a sender should stop sending). In contrast, QUIC allows multiple
concurrently active data streams (§3.2), and thus also defines a per-
stream FC allowance, in addition to a connection-wide limit. QUIC’s
limits are expressed in maximum byte stream offsets [23], meaning
they can never shrink and only grow in absolute values. Updates to
these limits are communicated in MAX(_STREAM)_DATA frames, yet
it is up to the developer to decide on the frequency of and allowance
amount included in these frames. This is an important aspect to get
right, as too few or too low limit updates can stall a fast sender, even if
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the receive buffer is not fully occupied as the receiver’s updates take
aRTT to reach the sender [23]. We identify three main approaches
(see also Figure 1):

FC1 static allowance (A): the receive buffer size stays unchanged
and the maximum allowance increases linearly. This requires a fixed
amount of memory, but can cause stalls if the updates are delayed.

FC2 growing allowance (O): the receive buffer size grows over
time, causing a non-linear relationship. This reduces the risk of being
FC stalled, but requires more memory.

FC3 autotuning: the receive buffer size is dynamic, based on
RTT estimates and application data consumption rate [40, 44]. This
balances memory requirements against the potential for stalls.

Interestingly, we find only one QUIC stack (quiche) employs the
more advanced FC3. Just 3/12 do FC2, while most of the 8/12 stacks
doing FC1 simply update their absolute FC limits by adding the
static buffer size once the receiving application has consumed 50% of
the incoming data. Some however do exhibit interesting variations.
Firstly, quiche initially used FC1 and updated at the 50% mark, but
did not add the full buffer size. Instead it added the amount of bytes
the application had consumed, meaning that with every update the
allowance increase was halved. This in turn led to an increasing
update frequency to keep the total allowance static (see ®), which is
bad for goodput efficiency (see §3.3). After reviewing our results, they
updated to FC3 [14]. Secondly, quant uses FC1, but allows stream-
level allowance to grow beyond the connection-level limit (see @)
which could stall fast senders on this connection-level allowance.

By the implementers’ own admission, the presence of these weird
behaviours and absence of smarter schemes, is because most have
not yet spent time fine-tuning FC approaches and memory require-
ments. To prevent stalling the sender, many simply set high initial
allowances (e.g., 10MB in ®), 15MB in Google Chrome) and update
early (the 50% mark). Several even asked us for guidance in choosing
a better FC approach. However, as QUIC is fundamentally differ-
ent from TCP in this respect, it is difficult to assess which scheme
works best in practice. Facebook’s approach (see @) does give us
an indication, as they have tweaked their behaviour in a real-life
deployment. However their setup is also not foolproof (see §3.2), they
are biased towards their specific use-case (loading content in native
apps), and indicate being limited by existing application layer logic
that was originally tweaked for TCP+H2 (e.g., setting higher initial
FC limits would cause the app to aggressively preload resources,
causing bandwidth contention). In all, we can say QUIC FC is an
open problem, though a variant of FC3 is expected to work best.
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Figure 2: Multiplexing behaviour across different QUIC stacks when downloading 10 1MB files in parallel. Each small colored
rectangle is one packet belonging to a file. Long colored areas indicate sequential scheduling. Black areas indicate which
frames above them contain retransmitted data. Data arrives from left to right.

3.2 Multiplexing & Prioritization

TCP abstracts its connection as a single, fully ordered and reliable
byte stream. This does not perform optimally in situations where mul-
tiple, independent data streams can be in progress at the same time
(e.g.,loading a Web page’s resources). H2 attempted to get around this
by defining the concept of concurrent byte streams at the application
layer, yet this still mapped badly to TCP’s single stream viewpoint
(e.g., the Head-of-Line Blocking problem [28]). This is one of the
motivations behind QUIC, which instead makes streams first-class
citizens in the transport layer. A crucial aspect of handling multiple
concurrently active byte streams is how to divide a sender’s available
bandwidth among them. This can be done in two main ways, see
Figure 2. Firstly, a Round-Robin (RR) scheduler (D,2) divides band-
width among various streams (either fairly or with different stream
weights) by splitting resources into smaller chunks and interleaving
them. Secondly, a sequential scheduler (3),@) sends all (available)
data for a single stream before allocating bandwidth to the next. The
optimal approach often depends on the application semantics. For
example, both H2 and H3 use a “prioritization” system to drive this
behaviour and sequential scheduling is thought to work best for Web
page loading performance [28, 45]. We did not yet evaluate H3-level
prioritization, as it entails a radical departure from H2’s approach
and is not fully defined or mature at this time [34], which is reflected
by only 5/18 providing highly experimental support. Instead, since
QUIC is supposed to be a general purpose transport protocol, we
evaluated whether stacks provide sensible default transport-layer
multiplexing, as the QUIC texts leave it fully up to the developer to
determine what this behaviour should be. This is clearly visible in the
default approaches taken by the different stacks. We find 9/13 stacks
to employ a form of RR (6/9 switching streams each QUIC packet,
2/9 switching every 4-10 packets, and 1 unexpectedly switching only
after filling the current congestion window (§3.4)). 4/13 stacks opt
for a sequential variant instead, though we originally found 3 of
them to erroneously sending data in Last-In First-Out (LIFO) order
@, typically thought to be a worst-case approach [42] (2/3 have since
changed their approach to FIFO). The optimal approach is however
more difficult to determine at this time and requires further study.
A peculiar interaction between Flow Control (FC, §3.1) and stream
scheduling was observed when downloading 10 concurrent 1000000
byte (1MB) files from the mvfst server @. There, a clearly anomalous
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sequential period is visible for the yellow (first) stream. This was due
to our aioquic testclient setting both the connection and stream-level
initial FC limits to 1048576 bytes (1MiB). mvfst processes requests
1-by-1 and fully buffered the first file. For the second request, only
48576 bytes remained of the connection FC limit, so only that much
was prepared, while requests 3-10 were placed on-hold. When the RR
scheduler kicked in, stream 1 was initially multiplexed with stream
2.Soon the stream 2 data ran out and the scheduler had only stream
1 data available, until the client’s connection FC update allowed
the server to buffer more stream data. It is clear from this example
that FC can have (unintended) impactful interactions with stream
multiplexing and can hinder prioritization efforts.

A final aspect is how QUIC arranges retransmissions. As TCP’s
single byte stream abstraction is fully ordered, its retransmissions
are always given the absolute highest precedence. However, QUIC’s
per-stream loss tracking and delivery ordering means that retrans-
missions can be scheduled much like “new” stream data. Concep-
tually, we can define 4 Retransmission Approaches (RAs), see also
Figure 2. The following example sequences assume a fair RR mul-
tiplexer that needs to schedule 8 packets, 2 for each stream A, B, C,
and D, where A and B’s packets contain retransmissions, versus C
and D’s new data:

RA1: retransmissions are seen as “normal” data and sent when
the scheduler next selects the stream: ABCDABCD.

RAZ2: retransmissions are given highest precedence, and use the
default RR scheduling approach: ABABCDCD.

RAS3: retransmissions are given highest precedence, and use a
non-default sequential scheduling approach: AABBCDCD.

RAA4: retransmissions explicitly take into account application-
layer prioritization (e.g., new data for a high priority H3 stream
(C) could get precedence over retransmissions of lower priority H3
streams (A and B, with lowest priority D)): CCABABDD.

Here we find that most implementers do give retransmissions a
higher priority: 9/13 do RA2 and 1/13 (mvfst @) does RA3, while
just 2/13 employ RA1. Only quicly currently supports RA4 for H3
transfers, falling back to RA2 if QUIC is used directly without H3.
The low occurence of RA4 is likely because only 3/15 stacks integrate
QUIC stream scheduling with H3 semantics at this point.

It is unclear which RA performs best in practice, though it seems
especially a variant of RA4 could give H3 an edge over H2 in some
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situations. Most implementers indicate their current RA is not an
intentional, considered choice but rather emergent behaviour of how
they globally handle stream data scheduling.

3.3 Packetization

While the binary QUIC and H3 frame and packet structures are
well-defined in the specifications, there are many variations in how
they can be utilized, sized and combined. For example, H3 defines
the HEADERS and DATA frames [8]. These are in turn passed to
the QUIC layer, whereby typically QUIC has no knowledge of the
H3 semantics: it treats H3-level data on each QUIC stream as an
ordered but opaque byte sequence. These bytes are then put inside
QUIC-level STREAM frames for transport. Practically, this means that
multiple H3-level frames can be aggregated together inside a single
QUIC STREAM frame, which is good for efficiency. We find that
9/13 servers consistently do this, but that 4/13 tend to instead pack
HEADERS and DATA frames into separate STREAM frames. In stress
tests that request hundreds of very small files (<1kB), 6/13 servers
started showing even more inefficient behaviour, packing all H3
frames in separate STREAM frames, and even in tiny QUIC packets.
If we define goodput efficiency as the amount of useful transported
H3-level data (e.g., image file bytes) divided by the total amount of
bytes on the wire (including QUIC and H3 framing overhead), we find
that most stacks achieve 95-97% efficiency when downloading larger
files, which plummets to about 90% for most when downloading
many smaller files, with the worst case only achieving 83%. Few
implementers indicated that they had actively considered or tuned
their packetization overhead at this time.

A part of the goodput efficiency is the sizing of H3 DATA frames.
While QUIC STREAM frames cannot span multiple QUIC packets,
H3 DATA frames can theoretically be up to about 4600 Petabytes
(as their length is 62-bit encoded), and thus span many STREAM
frames. For goodput efficiency, fewer and thus larger DATA frames
are best. Here, we find a large heterogeneity. When downloading
files larger than 1MB, 6/13 have DATA frames larger than 1MB (large),
2/13 between 1MB and 100kB (medium), and 5/13 lower than 100kB
(small, of which one has the worst case of generating a new DATA
frame for each QUIC packet). Interestingly, we observed 3 stacks that
dynamically sized their DATA frames, growing or shrinking over time.
While this first seemed like intentional behaviour, it again turned out
to be due to (unexpected) cross-layer code interactions. For example,
one implementation simply writes as much H3 data (wrapped in a
single DATA frame) as allowed by the QUIC send buffer, which is
in turn dynamically sized based on the current Congestion Control
Window (see §3.4). Another acts as a TCP-QUIC proxy, transforming
QUIC streams into individual TCP connections and vice-versa. Here,
we observed DATA frame sizes to be highly irregular, as they are
dependent on how much data is available for each individual stream,
which is in turn internally driven by the separate TCP Congestion
and Flow Control dynamics.

Finally, QUIC mandates a minimum UDP payload size of 1200
bytes [23], butitis generally understood thatlarger sizes significantly
improve efficiency [19, 25]. It is best practice to start with a small
packet size and perform Path MTU Discovery (PMTUD) [23]. Still, we
find that at this time, just 3/14 stacks implement PMTUD, all of them
using the naive method of sending a single 1400-1500 byte QUIC
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packet containing mainly PADDING instead of the more advanced
DPLPMTUD approach [17]. The need for PMTUD was emphasized to
us by Facebook, who find many networks exhibit higher loss rates if
QUIC packets are even a few dozen bytes larger. Other implementers
recognize the usefulness of PMTUD, but did not consider it a priority.

3.4 Congestion Control

In terms of recovery (loss detection and congestion control (CC)),
QUIC inherits most of TCP’s concepts and decades of best practices
(e.g., selective acknowledgements, pacing, tail loss probes). The QUIC
recovery text [21] aggregates a discussion of all these concepts with
how they can be adapted to QUIC peculiarities such as its integrated
TLS handshake and unique packet numbers. For a practical example
with pseudo-code, the somewhat outdated, yet well-understood
New Reno CC [21] is used, even though it is not expected many
deployments would want to use this in production. As such, the
text provides a good starting point for adapting other CCs to QUIC.
We find that while most of the stacks have implemented QUIC’s
New Reno variant (9/15), especially many of the larger companies
indeed also support more modern CCs: 6/15 implement Cubic (4
with hystart [13], 1 with tweaks for satellite networks [20]), 4/15
implement BBRv1 and 3/15 go further with approaches like COPA [7]
or BBRv2 [11]. Facebook deploys BBRv1, Cloudflare Cubic [13]. Most
indicate that their CC implementation is ongoing work and has
not been (extensively) validated for performance or fairness. Some
developers not tied to larger companies mention not having enough
CC expertise to evaluate their implementation or to move to a more
advanced CC algorithm.

An important CC variable is the initial Congestion Window
(cwnd), which controls how many bytes an endpoint can send back
in the first flight (before growing the cwnd in “slow start”). The
QUIC text’s advice of an initial cwnd of 12kB-15kB (which is thought
to balance the risk of packet loss with a fast enough start [21]) is
followed by 11/14 stacks. In contrast, 3/14 (mostly those with roots
in the older gQUIC) choose a much larger window of 40kB+, though
these values are more heterogeneous in actual deployments [38]. For
example, we learned that Facebook uses machine learning to tune
their init cwnd, while f5 includes a cwnd estimate in their address
validation token for resumed connections (see §3.5).

Additionally, the QUIC text strongly encourages the use of pacing
(i.e., spreading out packets over an entire RTT instead of sending
them in a single burst with each cwnd increase, which is thought
to lower packet loss [6]). Interestingly, only 8/15 currently support
pacing. This is mainly due to the complexity of the technique (as
many QUIC implementers are not CC experts) and lacking support in
the Linux kernel in combination with other optimization techniques
(e.g., GSO combined with SO_TXTIME (16, 19, 25]).

Finally, the performance of a CC can be influenced heavily by
the frequency with which the receiver acknowledges (ACKs) data.
QUIC recommends sending an ACK for every 2 received packets [21].
Just 2/12 do so consistently, with 10/12 ACKing every 1-10+ packets.
This latter behaviour is mostly due to implementations reading up
to 10 or more packets at a time from the socket (and e.g., pacing can
thus influence variability). It is however also understood that ACK
processing is expensive in QUIC [18, 25] and 4/15 are experimenting
with the ACK Frequency extension to reduce this overhead [22]
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Figure 3: ORTT request and response size variations. We
assume an initial cwnd of 10 packets at the server.

3.5 ORTT

One of the key new features in QUIC is the zero RTT (ORTT) connec-
tion setup [26], which allows the exchange of application data (e.g.,
an H3 GET and its (partial) response) in the first flight (compared
to third or fourth in TCP+TLS). This derives from TLS 1.3, which
allows exchanging Pre-Shared encryption Keys in Session Tickets
during a first “I1RTT” connection (where data can only be exchanged
from the second flight onwards). These keys are then used to enable
ORTT on a subsequent connection [43], see Figure 3. Despite being a
high-profile feature, just 13/18 implement it, of which we tested 9.

One of the reasons for this lower uptake is that ORTT is complex
to implement securely, as it is vulnerable to (HTTP) replay and
UDP amplification/reflection attacks [23, 43]. This latter category is
possible when the attacker spoofs their IP address and sends a (small)
ORTT request for a (large) resource to the server. If the server simply
starts sending the (entire) resource to the spoofed victim IP, it could
be used in a (D)DoS attack. To prevent this, a QUIC server MUST
NOT [23] send more than 3 times as much data as it has received
from the client until the path is validated (confirming the IP was not
spoofed). This validation happens in 3 main ways (ZRs) (Figure 3):

ZR1 waits for a reply from the client to the early ORTT server
packets. This has the large downside that the ORTT response will
be rather small (just 5kB-7kB if the client sends its initial request in
1-2 packets). We feel this significantly reduces ORT T’s usefulness for
typical Web browsing use cases.

ZR2 alleviates this by sending an Address Validation token in
QUIC’s NEW_TOKEN frame [23]. This is sent encrypted by the server
in the first connection and used by the client for the second, so the
server can consider the path validated immediately. This allows it
to ignore the 3X limit and send more data, typically up to its initial
cwnd (10-40kB, see §3.4), which is superior to ZR1 in most cases.

ZR3 is mainly a legacy equivalent of ZR2 which securely encodes
the client’s IP address inside the TLS Session Ticket.

ZR1 and ZR2 are both used in 6/13 stacks, but ZR3 only by Face-
book, who have plans to migrate to the superior ZR2. Several ZR1
implementers also intend to switch to ZR2 in the future, initially
opting for the suboptimal ZR1 mainly for its easier implementation.

One way to improve upon ZR1 would be for the client to send
additional data along with the ORTT request (e.g., in the form of
padding), see Figure 3. This would in turn allow the server to reply
with more data while still adhering to the 3X limit. While testing
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whether the stacks would respond well to this, we found several
high impact bugs. One stack simply did not adhere to the 3X limit,
replying up to their 46kB initial cwnd to a 1.2kB request (a 36X
amplification). Another did apply the 3X limit, but forgot to check its
initial cwnd for ORTT responses (e.g., replying with 30kB ORTT data
to a 10kB request even though their cwnd was only 15kB). Finally,
one stack forgot to account retransmissions of lost packets in its
3X limit. If an attacking client never replied to anything after its
first 1.2kB, this stack sent up to 17kB of (retransmitted) data (14X).
Most other servers did adhere to the 3X limit and also sent more
data in response to a client sending additional padding. As such,
we recommend clients pad their ORTT requests to about 4kB-5kB
(higher values will give diminishing returns as most servers utilize
an initial cwnd of about 13kB (§3.4)). This should not be needed for
servers employing ZR2 (which should be preferred over ZR3).

4 DISCUSSION & CONCLUSION

In this work, we have discussed 15 different QUIC implementations
across a multitude of behaviours (see Table 1). Even though these
stacks all implement the exact same QUIC/H3 protocols, we have
shown that their low-level implementation choices lead to a large
behavioural heterogeneity between them. We believe this has im-
portant consequences for future QUIC/H3 research and evaluation.

While not all considered aspects might have a large impact on
most types of protocol evaluation results (e.g., H3 DATA frame sizing
or PMTUD support will typically matter less for the short lived flows
observed in Web page loading performance research [10]), other
discussed features, such as Flow Control, Congestion Control, Prior-
itization and 0 RTT can all lead to significant differences in results.
Yet, these are aspects that historically we and others [24, 45, 46]
rarely see rigorously evaluated or discussed in related work focusing
on H2 and also gQUIC. In order to be able to draw solid conclusions
about QUIC/H3 as protocols, we feel that future work should strive to
show scientific rigor in two main ways. Firstly, by performing deep
root-cause analysis of all observed high-level behaviours. Secondly,
by comparing multiple QUIC implementations. This especially holds
true in the next few years (2020-2023), as not all implementations will
be fully optimized or complete by the time QUIC/H3 are finalized.
Even though we expect many implementations to eventually gravi-
tate towards a smaller set of best practices than the approaches we
have encountered in this study, we still suspect stacks and especially
individual deployments will remain heterogeneous and deep insight
will remain key in researching, optimizing and extending QUIC+H3.

We believe that our methodology of using the qlog and qvis
tools [27, 31] has proven its potential to form the basis of a frame-
work to both analyze and extend or improve QUIC/H3 stacks. This
is also evidenced by the fact that several QUIC implementers have
lately started using these tools to validate their approaches [13, 41].
As currently 12/18 QUIC stacks support qlog, these tools are broadly
available and ready to use.

Overall, we posit that QUIC stacks are becoming mature enough
to be deployed and researched, but results from high-level metrics
should be thoroughly root-cause analyzed if researchers want to
draw broad conclusions on QUIC/H3 as protocols. There are many
opportunities for future research on QUIC behaviour tuning, es-
pecially around Flow Control, Multiplexing/H3 Prioritization, and
Retransmission approaches.
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